001     270637
005     20240809090118.0
024 7 _ |a 10.1038/s42003-024-06540-8
|2 doi
024 7 _ |a pmid:38997325
|2 pmid
024 7 _ |a pmc:PMC11245475
|2 pmc
024 7 _ |a altmetric:165446475
|2 altmetric
037 _ _ |a DZNE-2024-00809
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Squadrani, Lorenzo
|0 0000-0001-9758-6906
|b 0
245 _ _ |a Astrocytes enhance plasticity response during reversal learning.
260 _ _ |a London
|c 2024
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721296998_15953
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Astrocytes play a key role in the regulation of synaptic strength and are thought to orchestrate synaptic plasticity and memory. Yet, how specifically astrocytes and their neuroactive transmitters control learning and memory is currently an open question. Recent experiments have uncovered an astrocyte-mediated feedback loop in CA1 pyramidal neurons which is started by the release of endocannabinoids by active neurons and closed by astrocytic regulation of the D-serine levels at the dendrites. D-serine is a co-agonist for the NMDA receptor regulating the strength and direction of synaptic plasticity. Activity-dependent D-serine release mediated by astrocytes is therefore a candidate for mediating between long-term synaptic depression (LTD) and potentiation (LTP) during learning. Here, we show that the mathematical description of this mechanism leads to a biophysical model of synaptic plasticity consistent with the phenomenological model known as the BCM model. The resulting mathematical framework can explain the learning deficit observed in mice upon disruption of the D-serine regulatory mechanism. It shows that D-serine enhances plasticity during reversal learning, ensuring fast responses to changes in the external environment. The model provides new testable predictions about the learning process, driving our understanding of the functional role of neuron-glia interaction in learning.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Serine
|0 452VLY9402
|2 NLM Chemicals
650 _ 7 |a Receptors, N-Methyl-D-Aspartate
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Astrocytes: physiology
|2 MeSH
650 _ 2 |a Astrocytes: metabolism
|2 MeSH
650 _ 2 |a Neuronal Plasticity: physiology
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Reversal Learning: physiology
|2 MeSH
650 _ 2 |a Serine: metabolism
|2 MeSH
650 _ 2 |a Models, Neurological
|2 MeSH
650 _ 2 |a Receptors, N-Methyl-D-Aspartate: metabolism
|2 MeSH
700 1 _ |a Wert-Carvajal, Carlos
|b 1
700 1 _ |a Müller-Komorowska, Daniel
|b 2
700 1 _ |a Bohmbach, Kirsten
|0 0000-0002-6387-750X
|b 3
700 1 _ |a Henneberger, Christian
|0 P:(DE-2719)2811625
|b 4
700 1 _ |a Verzelli, Pietro
|b 5
700 1 _ |a Tchumatchenko, Tatjana
|0 0000-0001-9137-809X
|b 6
773 _ _ |a 10.1038/s42003-024-06540-8
|g Vol. 7, no. 1, p. 852
|0 PERI:(DE-600)2919698-X
|n 1
|p 852
|t Communications biology
|v 7
|y 2024
|x 2399-3642
856 4 _ |u https://pub.dzne.de/record/270637/files/DZNE-2024-00809%20SUP1.pdf
856 4 _ |u https://pub.dzne.de/record/270637/files/DZNE-2024-00809%20SUP2.pdf
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/270637/files/DZNE-2024-00809.pdf
856 4 _ |x pdfa
|u https://pub.dzne.de/record/270637/files/DZNE-2024-00809%20SUP1.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://pub.dzne.de/record/270637/files/DZNE-2024-00809%20SUP2.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/270637/files/DZNE-2024-00809.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:270637
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2811625
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMMUN BIOL : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:13:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:13:06Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b COMMUN BIOL : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:13:06Z
920 1 _ |0 I:(DE-2719)1013029
|k AG Henneberger
|l Synaptic and Glial Plasticity
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013029
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21