000270639 001__ 270639
000270639 005__ 20240809090118.0
000270639 0247_ $$2doi$$a10.3390/diagnostics14131422
000270639 0247_ $$2pmid$$apmid:39001312
000270639 0247_ $$2pmc$$apmc:PMC11241572
000270639 037__ $$aDZNE-2024-00811
000270639 041__ $$aEnglish
000270639 082__ $$a610
000270639 1001_ $$0P:(DE-2719)9003165$$aBendella, Zeynep$$b0$$eFirst author$$udzne
000270639 245__ $$aBrain and Ventricle Volume Alterations in Idiopathic Normal Pressure Hydrocephalus Determined by Artificial Intelligence-Based MRI Volumetry.
000270639 260__ $$aBasel$$bMDPI$$c2024
000270639 3367_ $$2DRIVER$$aarticle
000270639 3367_ $$2DataCite$$aOutput Types/Journal article
000270639 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721388188_24026
000270639 3367_ $$2BibTeX$$aARTICLE
000270639 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000270639 3367_ $$00$$2EndNote$$aJournal Article
000270639 520__ $$aThe aim of this study was to employ artificial intelligence (AI)-based magnetic resonance imaging (MRI) brain volumetry to potentially distinguish between idiopathic normal pressure hydrocephalus (iNPH), Alzheimer's disease (AD), and age- and sex-matched healthy controls (CG) by evaluating cortical, subcortical, and ventricular volumes. Additionally, correlations between the measured brain and ventricle volumes and two established semi-quantitative radiologic markers for iNPH were examined. An IRB-approved retrospective analysis was conducted on 123 age- and sex-matched subjects (41 iNPH, 41 AD, and 41 controls), with all of the iNPH patients undergoing routine clinical brain MRI prior to ventriculoperitoneal shunt implantation. Automated AI-based determination of different cortical and subcortical brain and ventricular volumes in mL, as well as calculation of population-based normalized percentiles according to an embedded database, was performed; the CE-certified software mdbrain v4.4.1 or above was used with a standardized T1-weighted 3D magnetization-prepared rapid gradient echo (MPRAGE) sequence. Measured brain volumes and percentiles were analyzed for between-group differences and correlated with semi-quantitative measurements of the Evans' index and corpus callosal angle: iNPH patients exhibited ventricular enlargement and changes in gray and white matter compared to AD patients and controls, with the most significant differences observed in total ventricular volume (+67%) and the lateral (+68%), third (+38%), and fourth (+31%) ventricles compared to controls. Global ventriculomegaly and marked white matter reduction with concomitant preservation of gray matter compared to AD and CG were characteristic of iNPH, whereas global and frontoparietally accentuated gray matter reductions were characteristic of AD. Evans' index and corpus callosal angle differed significantly between the three groups and moderately correlated with the lateral ventricular volumes in iNPH patients [Evans' index (r > 0.83, p ≤ 0.001), corpus callosal angle (r < -0.74, p ≤ 0.001)]. AI-based MRI volumetry in iNPH patients revealed global ventricular enlargement and focal brain atrophy, which, in contrast to healthy controls and AD patients, primarily involved the supratentorial white matter and was marked temporomesially and in the midbrain, while largely preserving gray matter. Integrating AI volumetry in conjunction with traditional radiologic measures could enhance iNPH identification and differentiation, potentially improving patient management and therapy response assessment.
000270639 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000270639 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000270639 650_7 $$2Other$$aautomated volumetrization
000270639 650_7 $$2Other$$abrain atrophy
000270639 650_7 $$2Other$$anormal pressure hydrocephalus
000270639 650_7 $$2Other$$aquantitative neuroimaging
000270639 7001_ $$0P:(DE-2719)9000867$$aPurrer, Veronika$$b1$$udzne
000270639 7001_ $$0P:(DE-2719)9001860$$aHaase, Robert$$b2
000270639 7001_ $$aZülow, Stefan$$b3
000270639 7001_ $$0P:(DE-2719)9000373$$aKindler, Christine$$b4
000270639 7001_ $$aBorger, Valerie$$b5
000270639 7001_ $$00000-0001-7986-5215$$aBanat, Mohammed$$b6
000270639 7001_ $$aDorn, Franziska$$b7
000270639 7001_ $$0P:(DE-2719)2000056$$aWüllner, Ullrich$$b8
000270639 7001_ $$0P:(DE-2719)9001861$$aRadbruch, Alexander$$b9$$udzne
000270639 7001_ $$0P:(DE-2719)9001551$$aSchmeel, Frederic Carsten$$b10$$eLast author
000270639 770__ $$aMachine Learning and Deep Learning for Healthcare Data Processing and Analyzing
000270639 773__ $$0PERI:(DE-600)2662336-5$$a10.3390/diagnostics14131422$$gVol. 14, no. 13, p. 1422 -$$n13$$p1422$$tDiagnostics$$v14$$x2075-4418$$y2024
000270639 8564_ $$uhttps://pub.dzne.de/record/270639/files/DZNE-2024-00811%20SUP.zip
000270639 8564_ $$uhttps://pub.dzne.de/record/270639/files/DZNE-2024-00811.pdf$$yOpenAccess
000270639 8564_ $$uhttps://pub.dzne.de/record/270639/files/DZNE-2024-00811.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000270639 909CO $$ooai:pub.dzne.de:270639$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000270639 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9003165$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000270639 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000867$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000270639 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001860$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000270639 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000373$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000270639 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000056$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000270639 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001861$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b9$$kDZNE
000270639 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001551$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b10$$kDZNE
000270639 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000270639 9141_ $$y2024
000270639 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
000270639 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
000270639 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000270639 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
000270639 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bDIAGNOSTICS : 2022$$d2023-10-26
000270639 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-07-07T16:30:38Z
000270639 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-07-07T16:30:38Z
000270639 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
000270639 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-26
000270639 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
000270639 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-26
000270639 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000270639 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
000270639 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-26
000270639 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
000270639 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
000270639 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
000270639 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
000270639 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-07-07T16:30:38Z
000270639 9201_ $$0I:(DE-2719)5000075$$kAG Radbruch$$lClinical Neuroimaging$$x0
000270639 9201_ $$0I:(DE-2719)1011001$$kAG Klockgether$$lPatient Studies$$x1
000270639 9201_ $$0I:(DE-2719)1011101$$kPatient Studies Bonn$$lPatient Studies Bonn$$x2
000270639 9201_ $$0I:(DE-2719)1011302$$kAG Wüllner$$lBiomarker Parkinson's Disease$$x3
000270639 980__ $$ajournal
000270639 980__ $$aVDB
000270639 980__ $$aI:(DE-2719)5000075
000270639 980__ $$aI:(DE-2719)1011001
000270639 980__ $$aI:(DE-2719)1011101
000270639 980__ $$aI:(DE-2719)1011302
000270639 980__ $$aUNRESTRICTED
000270639 9801_ $$aFullTexts