001     270639
005     20240809090118.0
024 7 _ |a 10.3390/diagnostics14131422
|2 doi
024 7 _ |a pmid:39001312
|2 pmid
024 7 _ |a pmc:PMC11241572
|2 pmc
037 _ _ |a DZNE-2024-00811
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Bendella, Zeynep
|0 P:(DE-2719)9003165
|b 0
|e First author
|u dzne
245 _ _ |a Brain and Ventricle Volume Alterations in Idiopathic Normal Pressure Hydrocephalus Determined by Artificial Intelligence-Based MRI Volumetry.
260 _ _ |a Basel
|c 2024
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721388188_24026
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The aim of this study was to employ artificial intelligence (AI)-based magnetic resonance imaging (MRI) brain volumetry to potentially distinguish between idiopathic normal pressure hydrocephalus (iNPH), Alzheimer's disease (AD), and age- and sex-matched healthy controls (CG) by evaluating cortical, subcortical, and ventricular volumes. Additionally, correlations between the measured brain and ventricle volumes and two established semi-quantitative radiologic markers for iNPH were examined. An IRB-approved retrospective analysis was conducted on 123 age- and sex-matched subjects (41 iNPH, 41 AD, and 41 controls), with all of the iNPH patients undergoing routine clinical brain MRI prior to ventriculoperitoneal shunt implantation. Automated AI-based determination of different cortical and subcortical brain and ventricular volumes in mL, as well as calculation of population-based normalized percentiles according to an embedded database, was performed; the CE-certified software mdbrain v4.4.1 or above was used with a standardized T1-weighted 3D magnetization-prepared rapid gradient echo (MPRAGE) sequence. Measured brain volumes and percentiles were analyzed for between-group differences and correlated with semi-quantitative measurements of the Evans' index and corpus callosal angle: iNPH patients exhibited ventricular enlargement and changes in gray and white matter compared to AD patients and controls, with the most significant differences observed in total ventricular volume (+67%) and the lateral (+68%), third (+38%), and fourth (+31%) ventricles compared to controls. Global ventriculomegaly and marked white matter reduction with concomitant preservation of gray matter compared to AD and CG were characteristic of iNPH, whereas global and frontoparietally accentuated gray matter reductions were characteristic of AD. Evans' index and corpus callosal angle differed significantly between the three groups and moderately correlated with the lateral ventricular volumes in iNPH patients [Evans' index (r > 0.83, p ≤ 0.001), corpus callosal angle (r < -0.74, p ≤ 0.001)]. AI-based MRI volumetry in iNPH patients revealed global ventricular enlargement and focal brain atrophy, which, in contrast to healthy controls and AD patients, primarily involved the supratentorial white matter and was marked temporomesially and in the midbrain, while largely preserving gray matter. Integrating AI volumetry in conjunction with traditional radiologic measures could enhance iNPH identification and differentiation, potentially improving patient management and therapy response assessment.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a automated volumetrization
|2 Other
650 _ 7 |a brain atrophy
|2 Other
650 _ 7 |a normal pressure hydrocephalus
|2 Other
650 _ 7 |a quantitative neuroimaging
|2 Other
700 1 _ |a Purrer, Veronika
|0 P:(DE-2719)9000867
|b 1
|u dzne
700 1 _ |a Haase, Robert
|0 P:(DE-2719)9001860
|b 2
700 1 _ |a Zülow, Stefan
|b 3
700 1 _ |a Kindler, Christine
|0 P:(DE-2719)9000373
|b 4
700 1 _ |a Borger, Valerie
|b 5
700 1 _ |a Banat, Mohammed
|0 0000-0001-7986-5215
|b 6
700 1 _ |a Dorn, Franziska
|b 7
700 1 _ |a Wüllner, Ullrich
|0 P:(DE-2719)2000056
|b 8
700 1 _ |a Radbruch, Alexander
|0 P:(DE-2719)9001861
|b 9
|u dzne
700 1 _ |a Schmeel, Frederic Carsten
|0 P:(DE-2719)9001551
|b 10
|e Last author
770 _ _ |a Machine Learning and Deep Learning for Healthcare Data Processing and Analyzing
773 _ _ |a 10.3390/diagnostics14131422
|g Vol. 14, no. 13, p. 1422 -
|0 PERI:(DE-600)2662336-5
|n 13
|p 1422
|t Diagnostics
|v 14
|y 2024
|x 2075-4418
856 4 _ |u https://pub.dzne.de/record/270639/files/DZNE-2024-00811%20SUP.zip
856 4 _ |u https://pub.dzne.de/record/270639/files/DZNE-2024-00811.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/270639/files/DZNE-2024-00811.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:270639
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9003165
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9000867
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9001860
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9000373
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2000056
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)9001861
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)9001551
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b DIAGNOSTICS : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-07-07T16:30:38Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-07-07T16:30:38Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-26
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-07-07T16:30:38Z
920 1 _ |0 I:(DE-2719)5000075
|k AG Radbruch
|l Clinical Neuroimaging
|x 0
920 1 _ |0 I:(DE-2719)1011001
|k AG Klockgether
|l Patient Studies
|x 1
920 1 _ |0 I:(DE-2719)1011101
|k Patient Studies Bonn
|l Patient Studies Bonn
|x 2
920 1 _ |0 I:(DE-2719)1011302
|k AG Wüllner
|l Biomarker Parkinson's Disease
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)5000075
980 _ _ |a I:(DE-2719)1011001
980 _ _ |a I:(DE-2719)1011101
980 _ _ |a I:(DE-2719)1011302
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21