001     270812
005     20250127091658.0
024 7 _ |a pmc:PMC11552497
|2 pmc
024 7 _ |a 10.1242/dmm.050740
|2 doi
024 7 _ |a pmid:39034883
|2 pmid
024 7 _ |a 1754-8403
|2 ISSN
024 7 _ |a 1754-8411
|2 ISSN
037 _ _ |a DZNE-2024-00902
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Kagermeier, Theresa
|0 0000-0002-7557-8523
|b 0
245 _ _ |a Human organoid model of pontocerebellar hypoplasia 2a recapitulates brain region-specific size differences.
260 _ _ |a Cambridge
|c 2024
|b Company of Biologists Limited
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1722417253_4038
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Pontocerebellar hypoplasia type 2a (PCH2a) is an ultra-rare, autosomal recessive pediatric disorder with limited treatment options. Its anatomical hallmark is hypoplasia of the cerebellum and pons accompanied by progressive microcephaly. A homozygous founder variant in TSEN54, which encodes a tRNA splicing endonuclease (TSEN) complex subunit, is causal. The pathological mechanism of PCH2a remains unknown due to the lack of a model system. Therefore, we developed human models of PCH2a using regionalized neural organoids. We generated induced pluripotent stem cell (iPSC) lines from three males with genetically confirmed PCH2a and subsequently differentiated cerebellar and neocortical organoids. Mirroring clinical neuroimaging findings, PCH2a cerebellar organoids were reduced in size compared to controls starting early in differentiation. Neocortical PCH2a organoids demonstrated milder growth deficits. Although PCH2a cerebellar organoids did not upregulate apoptosis, their stem cell zones showed altered proliferation kinetics, with increased proliferation at day 30 and reduced proliferation at day 50 compared to controls. In summary, we generated a human model of PCH2a, providing the foundation for deciphering brain region-specific disease mechanisms. Our first analyses suggest a neurodevelopmental aspect of PCH2a.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Apoptosis
|2 Other
650 _ 7 |a Cerebellum
|2 Other
650 _ 7 |a Differentiation
|2 Other
650 _ 7 |a Organoid
|2 Other
650 _ 7 |a PCH2a
|2 Other
650 _ 7 |a Rare disease
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Organoids: pathology
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: metabolism
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: pathology
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Brain: pathology
|2 MeSH
650 _ 2 |a Cell Differentiation
|2 MeSH
650 _ 2 |a Cerebellum: abnormalities
|2 MeSH
650 _ 2 |a Cerebellum: pathology
|2 MeSH
650 _ 2 |a Olivopontocerebellar Atrophies: pathology
|2 MeSH
650 _ 2 |a Olivopontocerebellar Atrophies: genetics
|2 MeSH
650 _ 2 |a Cell Proliferation
|2 MeSH
650 _ 2 |a Organ Size
|2 MeSH
650 _ 2 |a Models, Biological
|2 MeSH
650 _ 2 |a Apoptosis
|2 MeSH
650 _ 2 |a Cerebellar Diseases
|2 MeSH
700 1 _ |a Hauser, Stefan
|0 P:(DE-2719)2810998
|b 1
700 1 _ |a Sarieva, Kseniia
|0 0000-0002-0579-6090
|b 2
700 1 _ |a Laugwitz, Lucia
|0 0000-0003-2506-1961
|b 3
700 1 _ |a Groeschel, Samuel
|0 0000-0002-2706-7163
|b 4
700 1 _ |a Janzarik, Wibke G
|0 0000-0002-3651-1385
|b 5
700 1 _ |a Yentür, Zeynep
|0 0000-0002-4832-9927
|b 6
700 1 _ |a Becker, Katharina
|0 0000-0002-6479-3762
|b 7
700 1 _ |a Schöls, Ludger
|0 P:(DE-2719)2810795
|b 8
700 1 _ |a Kragelöh-Mann, Ingeborg
|0 P:(DE-2719)9000936
|b 9
700 1 _ |a Mayer, Simone
|0 0000-0002-6381-2474
|b 10
773 _ _ |a 10.1242/dmm.050740
|g Vol. 17, no. 7, p. dmm050740
|0 PERI:(DE-600)2451104-3
|n 7
|p dmm050740
|t Disease models & mechanisms
|v 17
|y 2024
|x 1754-8403
856 4 _ |u https://pub.dzne.de/record/270812/files/DZNE-2024-00902%20SUP1.xlsx
856 4 _ |u https://pub.dzne.de/record/270812/files/DZNE-2024-00902%20SUP2.xlsx
856 4 _ |u https://pub.dzne.de/record/270812/files/DZNE-2024-00902%20SUP3.xlsx
856 4 _ |u https://pub.dzne.de/record/270812/files/DZNE-2024-00902%20SUP4Info.pdf
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/270812/files/DZNE-2024-00902%2BData.pdf
856 4 _ |u https://pub.dzne.de/record/270812/files/DZNE-2024-00902%20SUP1.csv
856 4 _ |u https://pub.dzne.de/record/270812/files/DZNE-2024-00902%20SUP1.ods
856 4 _ |u https://pub.dzne.de/record/270812/files/DZNE-2024-00902%20SUP1.xls
856 4 _ |u https://pub.dzne.de/record/270812/files/DZNE-2024-00902%20SUP2.csv
856 4 _ |u https://pub.dzne.de/record/270812/files/DZNE-2024-00902%20SUP2.ods
856 4 _ |u https://pub.dzne.de/record/270812/files/DZNE-2024-00902%20SUP2.xls
856 4 _ |u https://pub.dzne.de/record/270812/files/DZNE-2024-00902%20SUP3.csv
856 4 _ |u https://pub.dzne.de/record/270812/files/DZNE-2024-00902%20SUP3.ods
856 4 _ |u https://pub.dzne.de/record/270812/files/DZNE-2024-00902%20SUP3.xls
856 4 _ |x pdfa
|u https://pub.dzne.de/record/270812/files/DZNE-2024-00902%20SUP4Info.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/270812/files/DZNE-2024-00902%2BData.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:270812
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2810998
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2810795
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b DIS MODEL MECH : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-14T15:05:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-14T15:05:40Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-05-14T15:05:40Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
920 1 _ |0 I:(DE-2719)5000005
|k AG Schöls
|l Clinical Neurogenetics
|x 0
920 1 _ |0 I:(DE-2719)1210016
|k AG Hauser
|l Advanced cellular models of neurodegeneration
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)5000005
980 _ _ |a I:(DE-2719)1210016
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21