000270875 001__ 270875 000270875 005__ 20250523100557.0 000270875 0247_ $$2doi$$a10.5281/ZENODO.11184216 000270875 0247_ $$2doi$$a10.5281/zenodo.11184216 000270875 037__ $$aDZNE-2024-00914 000270875 1001_ $$0P:(DE-2719)2812449$$aEstrada, Santiago$$b0$$eFirst author 000270875 245__ $$aDataset: HypVINN Checkpoints (v. 1.1.0) 000270875 260__ $$bZenodo$$c2024 000270875 3367_ $$2BibTeX$$aMISC 000270875 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1747924518_22615 000270875 3367_ $$026$$2EndNote$$aChart or Table 000270875 3367_ $$2DataCite$$aDataset 000270875 3367_ $$2ORCID$$aDATA_SET 000270875 3367_ $$2DINI$$aResearchData 000270875 520__ $$aTraining checkpoints for HypVINN (https://github.com/Deep-MI/FastSurfer) - please cite the paper when using this resource (https://doi.org/10.1162/imag_a_00034). Abstract The hypothalamus plays a crucial role in the regulation of a broad range of physiological, behavioral, and cognitive functions. However, despite its importance, only a few small-scale neuroimaging studies have investigated its substructures, likely due to the lack of fully automated segmentation tools to address scalability and reproducibility issues of manual segmentation. While the only previous attempt to automatically sub-segment the hypothalamus with a neural network showed promise for 1.0 mm isotropic T1-weighted (T1w) magnetic resonance imaging (MRI), there is a need for an automated tool to sub-segment also high-resolutional (HiRes) MR scans, as they are becoming widely available, and include structural detail also from multi-modal MRI. We, therefore, introduce a novel, fast, and fully automated deep-learning method named HypVINN for sub-segmentation of the hypothalamus and adjacent structures on 0.8 mm isotropic T1w and T2w brain MR images that is robust to missing modalities. We extensively validate our model with respect to segmentation accuracy, generalizability, in-session test-retest reliability, and sensitivity to replicate hypothalamic volume effects (e.g., sex differences). The proposed method exhibits high segmentation performance both for standalone T1w images as well as for T1w/T2w image pairs. Even with the additional capability to accept flexible inputs, our model matches or exceeds the performance of state-of-the-art methods with fixed inputs. We, further, demonstrate the generalizability of our method in experiments with 1.0 mm MR scans from both the Rhineland Study and the UK Biobank—an independent dataset never encountered during training with different acquisition parameters and demographics. Finally, HypVINN can perform the segmentation in less than a minute (graphical processing unit [GPU]) and will be available in the open source FastSurfer neuroimaging software suite, offering a validated, efficient, and scalable solution for evaluating imaging-derived phenotypes of the hypothalamus. 000270875 536__ $$0G:(DE-HGF)POF4-354$$a354 - Disease Prevention and Healthy Aging (POF4-354)$$cPOF4-354$$fPOF IV$$x0 000270875 588__ $$aDataset connected to DataCite 000270875 693__ $$0EXP:(DE-2719)Rhineland Study-20190321$$5EXP:(DE-2719)Rhineland Study-20190321$$eRhineland Study / Bonn$$x0 000270875 7001_ $$0P:(DE-2719)2814290$$aKügler, David$$b1$$udzne 000270875 7001_ $$0P:(DE-2719)2812803$$aBahrami Rad, Emad$$b2 000270875 7001_ $$0P:(DE-2719)9001766$$aXu, Peng$$b3$$udzne 000270875 7001_ $$0P:(DE-2719)2814343$$aMousa, Dilshad$$b4$$udzne 000270875 7001_ $$0P:(DE-2719)2810403$$aBreteler, Monique M. B.$$b5 000270875 7001_ $$0P:(DE-2719)2812578$$aAziz, N. Ahmad$$b6$$udzne 000270875 7001_ $$0P:(DE-2719)2812134$$aReuter, Martin$$b7$$eLast author 000270875 7001_ $$0P:(DE-2719)2812449$$aEstrada, Santiago$$b8$$eResearcher 000270875 7001_ $$aKügler, David$$b9$$eResearcher 000270875 7001_ $$aBahrami, Emad$$b10$$eResearcher 000270875 7001_ $$aXu, Peng$$b11$$eResearcher 000270875 7001_ $$aMousa, Dilshad$$b12$$eResearcher 000270875 7001_ $$0P:(DE-2719)2810403$$aBreteler, Monique M. B.$$b13$$eSupervisor 000270875 7001_ $$aAziz, N. Ahmad$$b14$$eSupervisor 000270875 7001_ $$0P:(DE-2719)2812134$$aReuter, Martin$$b15$$eSupervisor 000270875 773__ $$a10.5281/zenodo.11184216 000270875 7870_ $$0DZNE-2024-00227$$aEstrada, Santiago et.al.$$dZenodo, 2024$$iRelatedTo$$r$$tDataset: HypVINN Checkpoints (v. 1.0.0) 000270875 8564_ $$uhttps://pub.dzne.de/record/270875/files/DZNE-2024-00914.zip$$yOpenAccess 000270875 909CO $$ooai:pub.dzne.de:270875$$popen_access$$pdriver$$pVDB$$popenaire 000270875 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812449$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE 000270875 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2814290$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE 000270875 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812803$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE 000270875 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001766$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE 000270875 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2814343$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE 000270875 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810403$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE 000270875 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812578$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE 000270875 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812134$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b7$$kDZNE 000270875 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812449$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE 000270875 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810403$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b13$$kDZNE 000270875 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812134$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b15$$kDZNE 000270875 9131_ $$0G:(DE-HGF)POF4-354$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Prevention and Healthy Aging$$x0 000270875 9141_ $$y2024 000270875 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000270875 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000270875 9201_ $$0I:(DE-2719)1040310$$kAG Reuter$$lArtificial Intelligence in Medicine$$x0 000270875 9201_ $$0I:(DE-2719)1012001$$kAG Breteler$$lPopulation Health Sciences$$x1 000270875 9201_ $$0I:(DE-2719)5000071$$kAG Aziz$$lPopulation & Clinical Neuroepidemiology$$x2 000270875 980__ $$adataset 000270875 980__ $$aVDB 000270875 980__ $$aI:(DE-2719)1040310 000270875 980__ $$aI:(DE-2719)1012001 000270875 980__ $$aI:(DE-2719)5000071 000270875 980__ $$aUNRESTRICTED 000270875 9801_ $$aFullTexts