001     270875
005     20251113102915.0
024 7 _ |2 doi
|a 10.5281/ZENODO.11184216
024 7 _ |2 doi
|a 10.5281/zenodo.11184216
037 _ _ |a DZNE-2024-00914
100 1 _ |0 P:(DE-2719)2812449
|a Estrada, Santiago
|b 0
|e First author
245 _ _ |a Dataset: HypVINN Checkpoints (v. 1.1.0)
260 _ _ |b Zenodo
|c 2024
336 7 _ |2 BibTeX
|a MISC
336 7 _ |0 PUB:(DE-HGF)32
|2 PUB:(DE-HGF)
|a Dataset
|b dataset
|m dataset
|s 1762943534_29013
336 7 _ |0 26
|2 EndNote
|a Chart or Table
336 7 _ |2 DataCite
|a Dataset
336 7 _ |2 ORCID
|a DATA_SET
336 7 _ |2 DINI
|a ResearchData
520 _ _ |a Training checkpoints for HypVINN (https://github.com/Deep-MI/FastSurfer) - please cite the paper when using this resource (https://doi.org/10.1162/imag_a_00034). Abstract The hypothalamus plays a crucial role in the regulation of a broad range of physiological, behavioral, and cognitive functions. However, despite its importance, only a few small-scale neuroimaging studies have investigated its substructures, likely due to the lack of fully automated segmentation tools to address scalability and reproducibility issues of manual segmentation. While the only previous attempt to automatically sub-segment the hypothalamus with a neural network showed promise for 1.0 mm isotropic T1-weighted (T1w) magnetic resonance imaging (MRI), there is a need for an automated tool to sub-segment also high-resolutional (HiRes) MR scans, as they are becoming widely available, and include structural detail also from multi-modal MRI. We, therefore, introduce a novel, fast, and fully automated deep-learning method named HypVINN for sub-segmentation of the hypothalamus and adjacent structures on 0.8 mm isotropic T1w and T2w brain MR images that is robust to missing modalities. We extensively validate our model with respect to segmentation accuracy, generalizability, in-session test-retest reliability, and sensitivity to replicate hypothalamic volume effects (e.g., sex differences). The proposed method exhibits high segmentation performance both for standalone T1w images as well as for T1w/T2w image pairs. Even with the additional capability to accept flexible inputs, our model matches or exceeds the performance of state-of-the-art methods with fixed inputs. We, further, demonstrate the generalizability of our method in experiments with 1.0 mm MR scans from both the Rhineland Study and the UK Biobank—an independent dataset never encountered during training with different acquisition parameters and demographics. Finally, HypVINN can perform the segmentation in less than a minute (graphical processing unit [GPU]) and will be available in the open source FastSurfer neuroimaging software suite, offering a validated, efficient, and scalable solution for evaluating imaging-derived phenotypes of the hypothalamus.
536 _ _ |0 G:(DE-HGF)POF4-354
|a 354 - Disease Prevention and Healthy Aging (POF4-354)
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
693 _ _ |0 EXP:(DE-2719)Rhineland Study-20190321
|5 EXP:(DE-2719)Rhineland Study-20190321
|e Rhineland Study / Bonn
|x 0
700 1 _ |0 P:(DE-2719)2814290
|a Kügler, David
|b 1
700 1 _ |0 P:(DE-2719)2812803
|a Bahrami Rad, Emad
|b 2
700 1 _ |0 P:(DE-2719)9001766
|a Xu, Peng
|b 3
700 1 _ |0 P:(DE-2719)2814343
|a Mousa, Dilshad
|b 4
700 1 _ |0 P:(DE-2719)2810403
|a Breteler, Monique M. B.
|b 5
700 1 _ |0 P:(DE-2719)2812578
|a Aziz, N. Ahmad
|b 6
700 1 _ |0 P:(DE-2719)2812134
|a Reuter, Martin
|b 7
|e Last author
700 1 _ |0 P:(DE-2719)2812449
|a Estrada, Santiago
|b 8
|e Researcher
700 1 _ |0 P:(DE-2719)2814290
|a Kügler, David
|b 9
|e Researcher
|u dzne
700 1 _ |0 P:(DE-HGF)0
|a Bahrami, Emad
|b 10
700 1 _ |0 P:(DE-2719)9001766
|a Xu, Peng
|b 11
|e Researcher
|u dzne
700 1 _ |0 P:(DE-2719)2814343
|a Mousa, Dilshad
|b 12
|e Researcher
|u dzne
700 1 _ |0 P:(DE-2719)2810403
|a Breteler, Monique M. B.
|b 13
|e Supervisor
700 1 _ |0 P:(DE-2719)2812578
|a Aziz, N. Ahmad
|b 14
|e Supervisor
|u dzne
700 1 _ |0 P:(DE-2719)2812134
|a Reuter, Martin
|b 15
|e Supervisor
773 _ _ |a 10.5281/zenodo.11184216
787 0 _ |0 DZNE-2024-00227
|a Estrada, Santiago et.al.
|d Zenodo, 2024
|i RelatedTo
|t Dataset: HypVINN Checkpoints (v. 1.0.0)
856 4 _ |u https://pub.dzne.de/record/270875/files/DZNE-2024-00914.zip
909 C O |o oai:pub.dzne.de:270875
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |0 I:(DE-588)1065079516
|6 P:(DE-2719)2812449
|a Deutsches Zentrum für Neurodegenerative Erkrankungen
|b 0
|k DZNE
910 1 _ |0 I:(DE-588)1065079516
|6 P:(DE-2719)2814290
|a Deutsches Zentrum für Neurodegenerative Erkrankungen
|b 1
|k DZNE
910 1 _ |0 I:(DE-588)1065079516
|6 P:(DE-2719)2812803
|a Deutsches Zentrum für Neurodegenerative Erkrankungen
|b 2
|k DZNE
910 1 _ |0 I:(DE-588)1065079516
|6 P:(DE-2719)9001766
|a Deutsches Zentrum für Neurodegenerative Erkrankungen
|b 3
|k DZNE
910 1 _ |0 I:(DE-588)1065079516
|6 P:(DE-2719)2814343
|a Deutsches Zentrum für Neurodegenerative Erkrankungen
|b 4
|k DZNE
910 1 _ |0 I:(DE-588)1065079516
|6 P:(DE-2719)2810403
|a Deutsches Zentrum für Neurodegenerative Erkrankungen
|b 5
|k DZNE
910 1 _ |0 I:(DE-588)1065079516
|6 P:(DE-2719)2812578
|a Deutsches Zentrum für Neurodegenerative Erkrankungen
|b 6
|k DZNE
910 1 _ |0 I:(DE-588)1065079516
|6 P:(DE-2719)2812134
|a Deutsches Zentrum für Neurodegenerative Erkrankungen
|b 7
|k DZNE
910 1 _ |0 I:(DE-588)1065079516
|6 P:(DE-2719)2812449
|a Deutsches Zentrum für Neurodegenerative Erkrankungen
|b 8
|k DZNE
910 1 _ |0 I:(DE-588)1065079516
|6 P:(DE-2719)2814290
|a Deutsches Zentrum für Neurodegenerative Erkrankungen
|b 9
|k DZNE
910 1 _ |0 I:(DE-588)1065079516
|6 P:(DE-HGF)0
|a Deutsches Zentrum für Neurodegenerative Erkrankungen
|b 10
|k DZNE
910 1 _ |0 I:(DE-588)1065079516
|6 P:(DE-2719)9001766
|a Deutsches Zentrum für Neurodegenerative Erkrankungen
|b 11
|k DZNE
910 1 _ |0 I:(DE-588)1065079516
|6 P:(DE-2719)2814343
|a Deutsches Zentrum für Neurodegenerative Erkrankungen
|b 12
|k DZNE
910 1 _ |0 I:(DE-588)1065079516
|6 P:(DE-2719)2810403
|a Deutsches Zentrum für Neurodegenerative Erkrankungen
|b 13
|k DZNE
910 1 _ |0 I:(DE-588)1065079516
|6 P:(DE-2719)2812578
|a Deutsches Zentrum für Neurodegenerative Erkrankungen
|b 14
|k DZNE
910 1 _ |0 I:(DE-588)1065079516
|6 P:(DE-2719)2812134
|a Deutsches Zentrum für Neurodegenerative Erkrankungen
|b 15
|k DZNE
913 1 _ |0 G:(DE-HGF)POF4-354
|1 G:(DE-HGF)POF4-350
|2 G:(DE-HGF)POF4-300
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|v Disease Prevention and Healthy Aging
|x 0
914 1 _ |y 2024
920 1 _ |0 I:(DE-2719)1040310
|k AG Reuter
|l Artificial Intelligence in Medicine
|x 0
920 1 _ |0 I:(DE-2719)1012001
|k AG Breteler
|l Population Health Sciences
|x 1
920 1 _ |0 I:(DE-2719)5000071
|k AG Aziz
|l Population & Clinical Neuroepidemiology
|x 2
980 _ _ |a dataset
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1040310
980 _ _ |a I:(DE-2719)1012001
980 _ _ |a I:(DE-2719)5000071
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21