000270888 001__ 270888
000270888 005__ 20240811004438.0
000270888 0247_ $$2doi$$a10.7554/eLife.93804
000270888 0247_ $$2pmid$$apmid:39042440
000270888 0247_ $$2pmc$$apmc:PMC11265795
000270888 0247_ $$2altmetric$$aaltmetric:158375188
000270888 037__ $$aDZNE-2024-00921
000270888 041__ $$aEnglish
000270888 082__ $$a600
000270888 1001_ $$aMasala, Nicola$$b0
000270888 245__ $$aAberrant hippocampal Ca2+ microwaves following synapsin-dependent adeno-associated viral expression of Ca2+ indicators.
000270888 260__ $$aCambridge$$beLife Sciences Publications$$c2024
000270888 3367_ $$2DRIVER$$aarticle
000270888 3367_ $$2DataCite$$aOutput Types/Journal article
000270888 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1722844065_8789
000270888 3367_ $$2BibTeX$$aARTICLE
000270888 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000270888 3367_ $$00$$2EndNote$$aJournal Article
000270888 520__ $$aGenetically encoded calcium indicators (GECIs) such as GCaMP are invaluable tools in neuroscience to monitor neuronal activity using optical imaging. The viral transduction of GECIs is commonly used to target expression to specific brain regions, can be conveniently used with any mouse strain of interest without the need for prior crossing with a GECI mouse line, and avoids potential hazards due to the chronic expression of GECIs during development. A key requirement for monitoring neuronal activity with an indicator is that the indicator itself minimally affects activity. Here, using common adeno-associated viral (AAV) transduction procedures, we describe spatially confined aberrant Ca2+ microwaves slowly travelling through the hippocampus following expression of GCaMP6, GCaMP7, or R-CaMP1.07 driven by the synapsin promoter with AAV-dependent gene transfer in a titre-dependent fashion. Ca2+ microwaves developed in hippocampal CA1 and CA3, but not dentate gyrus nor neocortex, were typically first observed at 4 wk after viral transduction, and persisted up to at least 8 wk. The phenomenon was robust and observed across laboratories with various experimenters and setups. Our results indicate that aberrant hippocampal Ca2+ microwaves depend on the promoter and viral titre of the GECI, density of expression, as well as the targeted brain region. We used an alternative viral transduction method of GCaMP which avoids this artefact. The results show that commonly used Ca2+-indicator AAV transduction procedures can produce artefactual Ca2+ responses. Our aim is to raise awareness in the field of these artefactual transduction-induced Ca2+ microwaves, and we provide a potential solution.
000270888 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000270888 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000270888 650_7 $$2Other$$aAAV
000270888 650_7 $$2Other$$aGCaMP
000270888 650_7 $$2Other$$aGECI
000270888 650_7 $$2Other$$ain vivo
000270888 650_7 $$2Other$$amouse
000270888 650_7 $$2Other$$aneuroscience
000270888 650_7 $$2NLM Chemicals$$aSynapsins
000270888 650_7 $$0SY7Q814VUP$$2NLM Chemicals$$aCalcium
000270888 650_2 $$2MeSH$$aAnimals
000270888 650_2 $$2MeSH$$aDependovirus: genetics
000270888 650_2 $$2MeSH$$aSynapsins: metabolism
000270888 650_2 $$2MeSH$$aSynapsins: genetics
000270888 650_2 $$2MeSH$$aCalcium: metabolism
000270888 650_2 $$2MeSH$$aHippocampus: metabolism
000270888 650_2 $$2MeSH$$aMice
000270888 650_2 $$2MeSH$$aGenetic Vectors
000270888 650_2 $$2MeSH$$aTransduction, Genetic
000270888 650_2 $$2MeSH$$aPromoter Regions, Genetic
000270888 650_2 $$2MeSH$$aMice, Inbred C57BL
000270888 650_2 $$2MeSH$$aMale
000270888 7001_ $$0P:(DE-2719)2811044$$aMittag, Manuel$$b1$$udzne
000270888 7001_ $$0P:(DE-2719)2811489$$aAmbrad Giovannetti, Eleonora$$b2$$udzne
000270888 7001_ $$aO'Neil, Darik A$$b3
000270888 7001_ $$aDistler, Fabian J$$b4
000270888 7001_ $$00000-0001-8235-8257$$aRupprecht, Peter$$b5
000270888 7001_ $$00000-0002-8867-9569$$aHelmchen, Fritjof$$b6
000270888 7001_ $$00000-0003-4206-497X$$aYuste, Rafael$$b7
000270888 7001_ $$0P:(DE-2719)2679991$$aFuhrmann, Martin$$b8
000270888 7001_ $$0P:(DE-2719)2000044$$aBeck, Heinz$$b9
000270888 7001_ $$00000-0002-6065-1660$$aWenzel, Michael$$b10
000270888 7001_ $$00000-0001-6066-0455$$aKelly, Tony$$b11
000270888 773__ $$0PERI:(DE-600)2687154-3$$a10.7554/eLife.93804$$gVol. 13, p. RP93804$$pRP93804$$teLife$$v13$$x2050-084X$$y2024
000270888 8564_ $$uhttps://pub.dzne.de/record/270888/files/DZNE-2024-00921.pdf$$yOpenAccess
000270888 8564_ $$uhttps://pub.dzne.de/record/270888/files/DZNE-2024-00921.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000270888 909CO $$ooai:pub.dzne.de:270888$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000270888 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811044$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000270888 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811489$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000270888 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2679991$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000270888 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000044$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b9$$kDZNE
000270888 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000270888 9141_ $$y2024
000270888 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-22
000270888 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-22
000270888 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-22
000270888 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-22
000270888 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-22
000270888 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-08-22
000270888 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELIFE : 2022$$d2023-08-22
000270888 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-23T12:20:44Z
000270888 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-23T12:20:44Z
000270888 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-22
000270888 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-22
000270888 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-22
000270888 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000270888 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000270888 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-22
000270888 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-22
000270888 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELIFE : 2022$$d2023-08-22
000270888 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-22
000270888 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-22
000270888 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-22
000270888 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-09-23T12:20:44Z
000270888 9201_ $$0I:(DE-2719)1011004$$kAG Fuhrmann$$lNeuroimmunology and Imaging$$x0
000270888 980__ $$ajournal
000270888 980__ $$aVDB
000270888 980__ $$aUNRESTRICTED
000270888 980__ $$aI:(DE-2719)1011004
000270888 9801_ $$aFullTexts