001     270888
005     20240811004438.0
024 7 _ |a 10.7554/eLife.93804
|2 doi
024 7 _ |a pmid:39042440
|2 pmid
024 7 _ |a pmc:PMC11265795
|2 pmc
024 7 _ |a altmetric:158375188
|2 altmetric
037 _ _ |a DZNE-2024-00921
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Masala, Nicola
|b 0
245 _ _ |a Aberrant hippocampal Ca2+ microwaves following synapsin-dependent adeno-associated viral expression of Ca2+ indicators.
260 _ _ |a Cambridge
|c 2024
|b eLife Sciences Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1722844065_8789
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Genetically encoded calcium indicators (GECIs) such as GCaMP are invaluable tools in neuroscience to monitor neuronal activity using optical imaging. The viral transduction of GECIs is commonly used to target expression to specific brain regions, can be conveniently used with any mouse strain of interest without the need for prior crossing with a GECI mouse line, and avoids potential hazards due to the chronic expression of GECIs during development. A key requirement for monitoring neuronal activity with an indicator is that the indicator itself minimally affects activity. Here, using common adeno-associated viral (AAV) transduction procedures, we describe spatially confined aberrant Ca2+ microwaves slowly travelling through the hippocampus following expression of GCaMP6, GCaMP7, or R-CaMP1.07 driven by the synapsin promoter with AAV-dependent gene transfer in a titre-dependent fashion. Ca2+ microwaves developed in hippocampal CA1 and CA3, but not dentate gyrus nor neocortex, were typically first observed at 4 wk after viral transduction, and persisted up to at least 8 wk. The phenomenon was robust and observed across laboratories with various experimenters and setups. Our results indicate that aberrant hippocampal Ca2+ microwaves depend on the promoter and viral titre of the GECI, density of expression, as well as the targeted brain region. We used an alternative viral transduction method of GCaMP which avoids this artefact. The results show that commonly used Ca2+-indicator AAV transduction procedures can produce artefactual Ca2+ responses. Our aim is to raise awareness in the field of these artefactual transduction-induced Ca2+ microwaves, and we provide a potential solution.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a AAV
|2 Other
650 _ 7 |a GCaMP
|2 Other
650 _ 7 |a GECI
|2 Other
650 _ 7 |a in vivo
|2 Other
650 _ 7 |a mouse
|2 Other
650 _ 7 |a neuroscience
|2 Other
650 _ 7 |a Synapsins
|2 NLM Chemicals
650 _ 7 |a Calcium
|0 SY7Q814VUP
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Dependovirus: genetics
|2 MeSH
650 _ 2 |a Synapsins: metabolism
|2 MeSH
650 _ 2 |a Synapsins: genetics
|2 MeSH
650 _ 2 |a Calcium: metabolism
|2 MeSH
650 _ 2 |a Hippocampus: metabolism
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Genetic Vectors
|2 MeSH
650 _ 2 |a Transduction, Genetic
|2 MeSH
650 _ 2 |a Promoter Regions, Genetic
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Male
|2 MeSH
700 1 _ |a Mittag, Manuel
|0 P:(DE-2719)2811044
|b 1
|u dzne
700 1 _ |a Ambrad Giovannetti, Eleonora
|0 P:(DE-2719)2811489
|b 2
|u dzne
700 1 _ |a O'Neil, Darik A
|b 3
700 1 _ |a Distler, Fabian J
|b 4
700 1 _ |a Rupprecht, Peter
|0 0000-0001-8235-8257
|b 5
700 1 _ |a Helmchen, Fritjof
|0 0000-0002-8867-9569
|b 6
700 1 _ |a Yuste, Rafael
|0 0000-0003-4206-497X
|b 7
700 1 _ |a Fuhrmann, Martin
|0 P:(DE-2719)2679991
|b 8
700 1 _ |a Beck, Heinz
|0 P:(DE-2719)2000044
|b 9
700 1 _ |a Wenzel, Michael
|0 0000-0002-6065-1660
|b 10
700 1 _ |a Kelly, Tony
|0 0000-0001-6066-0455
|b 11
773 _ _ |a 10.7554/eLife.93804
|g Vol. 13, p. RP93804
|0 PERI:(DE-600)2687154-3
|p RP93804
|t eLife
|v 13
|y 2024
|x 2050-084X
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/270888/files/DZNE-2024-00921.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/270888/files/DZNE-2024-00921.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:270888
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2811044
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2811489
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2679991
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2000044
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELIFE : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-23T12:20:44Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-22
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELIFE : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-09-23T12:20:44Z
920 1 _ |0 I:(DE-2719)1011004
|k AG Fuhrmann
|l Neuroimmunology and Imaging
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1011004
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21