000271079 001__ 271079
000271079 005__ 20240811004517.0
000271079 0247_ $$2doi$$a10.1002/nbm.5159
000271079 0247_ $$2pmid$$apmid:38634301
000271079 0247_ $$2ISSN$$a0952-3480
000271079 0247_ $$2ISSN$$a1099-1492
000271079 0247_ $$2altmetric$$aaltmetric:162985811
000271079 037__ $$aDZNE-2024-00951
000271079 041__ $$aEnglish
000271079 082__ $$a610
000271079 1001_ $$00000-0001-7034-8959$$avan Osch, Matthias J P$$b0
000271079 245__ $$aHuman brain clearance imaging: Pathways taken by magnetic resonance imaging contrast agents after administration in cerebrospinal fluid and blood.
000271079 260__ $$aNew York, NY$$bWiley$$c2024
000271079 3367_ $$2DRIVER$$aarticle
000271079 3367_ $$2DataCite$$aOutput Types/Journal article
000271079 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1723113960_2212$$xReview Article
000271079 3367_ $$2BibTeX$$aARTICLE
000271079 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000271079 3367_ $$00$$2EndNote$$aJournal Article
000271079 520__ $$aOver the last decade, it has become evident that cerebrospinal fluid (CSF) plays a pivotal role in brain solute clearance through perivascular pathways and interactions between the brain and meningeal lymphatic vessels. Whereas most of this fundamental knowledge was gained from rodent models, human brain clearance imaging has provided important insights into the human system and highlighted the existence of important interspecies differences. Current gold standard techniques for human brain clearance imaging involve the injection of gadolinium-based contrast agents and monitoring their distribution and clearance over a period from a few hours up to 2 days. With both intrathecal and intravenous injections being used, which each have their own specific routes of distribution and thus clearance of contrast agent, a clear understanding of the kinetics associated with both approaches, and especially the differences between them, is needed to properly interpret the results. Because it is known that intrathecally injected contrast agent reaches the blood, albeit in small concentrations, and that similarly some of the intravenously injected agent can be detected in CSF, both pathways are connected and will, in theory, reach the same compartments. However, because of clear differences in relative enhancement patterns, both injection approaches will result in varying sensitivities for assessment of different subparts of the brain clearance system. In this opinion review article, the 'EU Joint Programme - Neurodegenerative Disease Research (JPND)' consortium on human brain clearance imaging provides an overview of contrast agent pharmacokinetics in vivo following intrathecal and intravenous injections and what typical concentrations and concentration-time curves should be expected. This can be the basis for optimizing and interpreting contrast-enhanced MRI for brain clearance imaging. Furthermore, this can shed light on how molecules may exchange between blood, brain, and CSF.
000271079 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000271079 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000271079 650_7 $$2Other$$abrain clearance
000271079 650_7 $$2Other$$acerebrospinal fluid
000271079 650_7 $$2Other$$aglymphatics
000271079 650_7 $$2Other$$aintrathecal injection
000271079 650_7 $$2Other$$aintravenous injection
000271079 650_7 $$2NLM Chemicals$$aContrast Media
000271079 650_2 $$2MeSH$$aHumans
000271079 650_2 $$2MeSH$$aContrast Media: pharmacokinetics
000271079 650_2 $$2MeSH$$aMagnetic Resonance Imaging
000271079 650_2 $$2MeSH$$aBrain: diagnostic imaging
000271079 650_2 $$2MeSH$$aBrain: metabolism
000271079 650_2 $$2MeSH$$aMetabolic Clearance Rate
000271079 650_2 $$2MeSH$$aAnimals
000271079 650_2 $$2MeSH$$aCerebrospinal Fluid: metabolism
000271079 650_2 $$2MeSH$$aCerebrospinal Fluid: diagnostic imaging
000271079 7001_ $$00000-0001-6784-1945$$aWåhlin, Anders$$b1
000271079 7001_ $$0P:(DE-HGF)0$$aScheyhing, Paul$$b2
000271079 7001_ $$00009-0009-3342-8592$$aMossige, Ingrid$$b3
000271079 7001_ $$00000-0003-2379-0861$$aHirschler, Lydiane$$b4
000271079 7001_ $$00000-0002-2031-722X$$aEklund, Anders$$b5
000271079 7001_ $$00009-0004-6341-8444$$aMogensen, Klara$$b6
000271079 7001_ $$00000-0001-9797-1062$$aGomolka, Ryszard$$b7
000271079 7001_ $$0P:(DE-2719)9001861$$aRadbruch, Alexander$$b8
000271079 7001_ $$00000-0002-1454-4725$$aQvarlander, Sara$$b9
000271079 7001_ $$00009-0009-6018-3666$$aDecker, Andreas$$b10
000271079 7001_ $$00000-0001-6502-6031$$aNedergaard, Maiken$$b11
000271079 7001_ $$00000-0003-4208-0005$$aMori, Yuki$$b12
000271079 7001_ $$00000-0001-6881-9280$$aEide, Per Kristian$$b13
000271079 7001_ $$0P:(DE-2719)9001745$$aDeike-Hofmann, Katerina$$b14
000271079 7001_ $$00000-0003-0919-4510$$aRingstad, Geir$$b15
000271079 773__ $$0PERI:(DE-600)2002003-X$$a10.1002/nbm.5159$$gVol. 37, no. 9, p. e5159$$n9$$pe5159$$tNMR in biomedicine$$v37$$x0952-3480$$y2024
000271079 8564_ $$uhttps://pub.dzne.de/record/271079/files/DZNE-2024-00951%20SUP.docx
000271079 8564_ $$uhttps://pub.dzne.de/record/271079/files/DZNE-2024-00951.pdf$$yOpenAccess
000271079 8564_ $$uhttps://pub.dzne.de/record/271079/files/DZNE-2024-00951.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000271079 8564_ $$uhttps://pub.dzne.de/record/271079/files/DZNE-2024-00951%20SUP.doc
000271079 8564_ $$uhttps://pub.dzne.de/record/271079/files/DZNE-2024-00951%20SUP.odt
000271079 8564_ $$uhttps://pub.dzne.de/record/271079/files/DZNE-2024-00951%20SUP.pdf
000271079 909CO $$ooai:pub.dzne.de:271079$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000271079 9101_ $$0I:(DE-588)1065079516$$6P:(DE-HGF)0$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000271079 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001861$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000271079 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001745$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b14$$kDZNE
000271079 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000271079 9141_ $$y2024
000271079 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22
000271079 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-22
000271079 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-22
000271079 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000271079 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNMR BIOMED : 2022$$d2023-10-22
000271079 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-22$$wger
000271079 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-22
000271079 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22
000271079 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-22
000271079 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000271079 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22
000271079 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-22$$wger
000271079 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22
000271079 9201_ $$0I:(DE-2719)5000075$$kAG Radbruch$$lClinical Neuroimaging$$x0
000271079 980__ $$ajournal
000271079 980__ $$aVDB
000271079 980__ $$aUNRESTRICTED
000271079 980__ $$aI:(DE-2719)5000075
000271079 9801_ $$aFullTexts