001     271079
005     20240811004517.0
024 7 _ |a 10.1002/nbm.5159
|2 doi
024 7 _ |a pmid:38634301
|2 pmid
024 7 _ |a 0952-3480
|2 ISSN
024 7 _ |a 1099-1492
|2 ISSN
024 7 _ |a altmetric:162985811
|2 altmetric
037 _ _ |a DZNE-2024-00951
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a van Osch, Matthias J P
|0 0000-0001-7034-8959
|b 0
245 _ _ |a Human brain clearance imaging: Pathways taken by magnetic resonance imaging contrast agents after administration in cerebrospinal fluid and blood.
260 _ _ |a New York, NY
|c 2024
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1723113960_2212
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Over the last decade, it has become evident that cerebrospinal fluid (CSF) plays a pivotal role in brain solute clearance through perivascular pathways and interactions between the brain and meningeal lymphatic vessels. Whereas most of this fundamental knowledge was gained from rodent models, human brain clearance imaging has provided important insights into the human system and highlighted the existence of important interspecies differences. Current gold standard techniques for human brain clearance imaging involve the injection of gadolinium-based contrast agents and monitoring their distribution and clearance over a period from a few hours up to 2 days. With both intrathecal and intravenous injections being used, which each have their own specific routes of distribution and thus clearance of contrast agent, a clear understanding of the kinetics associated with both approaches, and especially the differences between them, is needed to properly interpret the results. Because it is known that intrathecally injected contrast agent reaches the blood, albeit in small concentrations, and that similarly some of the intravenously injected agent can be detected in CSF, both pathways are connected and will, in theory, reach the same compartments. However, because of clear differences in relative enhancement patterns, both injection approaches will result in varying sensitivities for assessment of different subparts of the brain clearance system. In this opinion review article, the 'EU Joint Programme - Neurodegenerative Disease Research (JPND)' consortium on human brain clearance imaging provides an overview of contrast agent pharmacokinetics in vivo following intrathecal and intravenous injections and what typical concentrations and concentration-time curves should be expected. This can be the basis for optimizing and interpreting contrast-enhanced MRI for brain clearance imaging. Furthermore, this can shed light on how molecules may exchange between blood, brain, and CSF.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a brain clearance
|2 Other
650 _ 7 |a cerebrospinal fluid
|2 Other
650 _ 7 |a glymphatics
|2 Other
650 _ 7 |a intrathecal injection
|2 Other
650 _ 7 |a intravenous injection
|2 Other
650 _ 7 |a Contrast Media
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Contrast Media: pharmacokinetics
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging
|2 MeSH
650 _ 2 |a Brain: diagnostic imaging
|2 MeSH
650 _ 2 |a Brain: metabolism
|2 MeSH
650 _ 2 |a Metabolic Clearance Rate
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Cerebrospinal Fluid: metabolism
|2 MeSH
650 _ 2 |a Cerebrospinal Fluid: diagnostic imaging
|2 MeSH
700 1 _ |a Wåhlin, Anders
|0 0000-0001-6784-1945
|b 1
700 1 _ |a Scheyhing, Paul
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mossige, Ingrid
|0 0009-0009-3342-8592
|b 3
700 1 _ |a Hirschler, Lydiane
|0 0000-0003-2379-0861
|b 4
700 1 _ |a Eklund, Anders
|0 0000-0002-2031-722X
|b 5
700 1 _ |a Mogensen, Klara
|0 0009-0004-6341-8444
|b 6
700 1 _ |a Gomolka, Ryszard
|0 0000-0001-9797-1062
|b 7
700 1 _ |a Radbruch, Alexander
|0 P:(DE-2719)9001861
|b 8
700 1 _ |a Qvarlander, Sara
|0 0000-0002-1454-4725
|b 9
700 1 _ |a Decker, Andreas
|0 0009-0009-6018-3666
|b 10
700 1 _ |a Nedergaard, Maiken
|0 0000-0001-6502-6031
|b 11
700 1 _ |a Mori, Yuki
|0 0000-0003-4208-0005
|b 12
700 1 _ |a Eide, Per Kristian
|0 0000-0001-6881-9280
|b 13
700 1 _ |a Deike-Hofmann, Katerina
|0 P:(DE-2719)9001745
|b 14
700 1 _ |a Ringstad, Geir
|0 0000-0003-0919-4510
|b 15
773 _ _ |a 10.1002/nbm.5159
|g Vol. 37, no. 9, p. e5159
|0 PERI:(DE-600)2002003-X
|n 9
|p e5159
|t NMR in biomedicine
|v 37
|y 2024
|x 0952-3480
856 4 _ |u https://pub.dzne.de/record/271079/files/DZNE-2024-00951%20SUP.docx
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/271079/files/DZNE-2024-00951.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/271079/files/DZNE-2024-00951.pdf?subformat=pdfa
856 4 _ |u https://pub.dzne.de/record/271079/files/DZNE-2024-00951%20SUP.doc
856 4 _ |u https://pub.dzne.de/record/271079/files/DZNE-2024-00951%20SUP.odt
856 4 _ |u https://pub.dzne.de/record/271079/files/DZNE-2024-00951%20SUP.pdf
909 C O |o oai:pub.dzne.de:271079
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)9001861
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 14
|6 P:(DE-2719)9001745
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NMR BIOMED : 2022
|d 2023-10-22
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-22
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-22
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-22
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-22
920 1 _ |0 I:(DE-2719)5000075
|k AG Radbruch
|l Clinical Neuroimaging
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)5000075
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21