000271081 001__ 271081
000271081 005__ 20240811004519.0
000271081 0247_ $$2doi$$a10.7554/eLife.90565
000271081 0247_ $$2pmid$$apmid:39102289
000271081 0247_ $$2pmc$$apmc:PMC11299977
000271081 0247_ $$2altmetric$$aaltmetric:155287117
000271081 037__ $$aDZNE-2024-00953
000271081 041__ $$aEnglish
000271081 082__ $$a600
000271081 1001_ $$0P:(DE-2719)9000614$$aKislinger, Georg$$b0$$eFirst author$$udzne
000271081 245__ $$aCombining array tomography with electron tomography provides insights into leakiness of the blood-brain barrier in mouse cortex.
000271081 260__ $$aCambridge$$beLife Sciences Publications$$c2024
000271081 3367_ $$2DRIVER$$aarticle
000271081 3367_ $$2DataCite$$aOutput Types/Journal article
000271081 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1723114479_2211
000271081 3367_ $$2BibTeX$$aARTICLE
000271081 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000271081 3367_ $$00$$2EndNote$$aJournal Article
000271081 520__ $$aLike other volume electron microscopy approaches, automated tape-collecting ultramicrotomy (ATUM) enables imaging of serial sections deposited on thick plastic tapes by scanning electron microscopy (SEM). ATUM is unique in enabling hierarchical imaging and thus efficient screening for target structures, as needed for correlative light and electron microscopy. However, SEM of sections on tape can only access the section surface, thereby limiting the axial resolution to the typical size of cellular vesicles with an order of magnitude lower than the acquired xy resolution. In contrast, serial-section electron tomography (ET), a transmission electron microscopy-based approach, yields isotropic voxels at full EM resolution, but requires deposition of sections on electron-stable thin and fragile films, thus making screening of large section libraries difficult and prone to section loss. To combine the strength of both approaches, we developed 'ATUM-Tomo, a hybrid method, where sections are first reversibly attached to plastic tape via a dissolvable coating, and after screening detached and transferred to the ET-compatible thin films. As a proof-of-principle, we applied correlative ATUM-Tomo to study ultrastructural features of blood-brain barrier (BBB) leakiness around microthrombi in a mouse model of traumatic brain injury. Microthrombi and associated sites of BBB leakiness were identified by confocal imaging of injected fluorescent and electron-dense nanoparticles, then relocalized by ATUM-SEM, and finally interrogated by correlative ATUM-Tomo. Overall, our new ATUM-Tomo approach will substantially advance ultrastructural analysis of biological phenomena that require cell- and tissue-level contextualization of the finest subcellular textures.
000271081 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000271081 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000271081 650_7 $$2Other$$aCLEM
000271081 650_7 $$2Other$$aarray tomography
000271081 650_7 $$2Other$$ablood brain barrier
000271081 650_7 $$2Other$$acell biology
000271081 650_7 $$2Other$$acorrelation
000271081 650_7 $$2Other$$aimaging
000271081 650_7 $$2Other$$amouse
000271081 650_7 $$2Other$$aneuroscience
000271081 650_7 $$2Other$$avolume electron microscopy
000271081 650_2 $$2MeSH$$aAnimals
000271081 650_2 $$2MeSH$$aMice
000271081 650_2 $$2MeSH$$aElectron Microscope Tomography: methods
000271081 650_2 $$2MeSH$$aBlood-Brain Barrier: ultrastructure
000271081 650_2 $$2MeSH$$aCerebral Cortex: diagnostic imaging
000271081 650_2 $$2MeSH$$aCerebral Cortex: ultrastructure
000271081 650_2 $$2MeSH$$aMice, Inbred C57BL
000271081 650_2 $$2MeSH$$aMale
000271081 650_2 $$2MeSH$$aMicroscopy, Electron, Scanning: methods
000271081 650_2 $$2MeSH$$aMicrotomy
000271081 7001_ $$00000-0003-3017-0978$$aFabig, Gunar$$b1
000271081 7001_ $$aWehn, Antonia$$b2
000271081 7001_ $$0P:(DE-2719)9001702$$aRodriguez, Lucia$$b3$$udzne
000271081 7001_ $$0P:(DE-2719)9001710$$aJiang, Hanyi$$b4$$udzne
000271081 7001_ $$0P:(DE-2719)9001883$$aNiemann, Cornelia$$b5$$udzne
000271081 7001_ $$aKlymchenko, Andrey S$$b6
000271081 7001_ $$0P:(DE-2719)9000853$$aPlesnila, Nikolaus$$b7
000271081 7001_ $$0P:(DE-2719)2810727$$aMisgeld, Thomas$$b8
000271081 7001_ $$00000-0003-0203-1436$$aMüller-Reichert, Thomas$$b9
000271081 7001_ $$aKhalin, Igor$$b10
000271081 7001_ $$0P:(DE-2719)2812260$$aSchifferer, Martina$$b11$$eLast author
000271081 773__ $$0PERI:(DE-600)2687154-3$$a10.7554/eLife.90565$$gVol. 12, p. RP90565$$pRP90565$$teLife$$v12$$x2050-084X$$y2024
000271081 8564_ $$uhttps://pub.dzne.de/record/271081/files/DZNE-2024-00953%2BSUP.pdf$$yOpenAccess
000271081 8564_ $$uhttps://pub.dzne.de/record/271081/files/DZNE-2024-00953%2BSUP.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000271081 909CO $$ooai:pub.dzne.de:271081$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000271081 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000614$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000271081 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001702$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000271081 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001710$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000271081 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001883$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000271081 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810727$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000271081 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812260$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b11$$kDZNE
000271081 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000271081 9141_ $$y2024
000271081 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-22
000271081 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-22
000271081 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-22
000271081 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-22
000271081 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-22
000271081 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-08-22
000271081 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELIFE : 2022$$d2023-08-22
000271081 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-23T12:20:44Z
000271081 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-23T12:20:44Z
000271081 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-22
000271081 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-22
000271081 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-22
000271081 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000271081 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000271081 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-22
000271081 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-22
000271081 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELIFE : 2022$$d2023-08-22
000271081 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-22
000271081 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-22
000271081 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-22
000271081 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-09-23T12:20:44Z
000271081 9201_ $$0I:(DE-2719)1110000-4$$kAG Misgeld$$lNeuronal Cell Biology$$x0
000271081 9201_ $$0I:(DE-2719)1110008$$kAG Simons$$lMolecular Neurobiology$$x1
000271081 980__ $$ajournal
000271081 980__ $$aVDB
000271081 980__ $$aUNRESTRICTED
000271081 980__ $$aI:(DE-2719)1110000-4
000271081 980__ $$aI:(DE-2719)1110008
000271081 9801_ $$aFullTexts