001     271081
005     20240811004519.0
024 7 _ |a 10.7554/eLife.90565
|2 doi
024 7 _ |a pmid:39102289
|2 pmid
024 7 _ |a pmc:PMC11299977
|2 pmc
024 7 _ |a altmetric:155287117
|2 altmetric
037 _ _ |a DZNE-2024-00953
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Kislinger, Georg
|0 P:(DE-2719)9000614
|b 0
|e First author
|u dzne
245 _ _ |a Combining array tomography with electron tomography provides insights into leakiness of the blood-brain barrier in mouse cortex.
260 _ _ |a Cambridge
|c 2024
|b eLife Sciences Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1723114479_2211
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Like other volume electron microscopy approaches, automated tape-collecting ultramicrotomy (ATUM) enables imaging of serial sections deposited on thick plastic tapes by scanning electron microscopy (SEM). ATUM is unique in enabling hierarchical imaging and thus efficient screening for target structures, as needed for correlative light and electron microscopy. However, SEM of sections on tape can only access the section surface, thereby limiting the axial resolution to the typical size of cellular vesicles with an order of magnitude lower than the acquired xy resolution. In contrast, serial-section electron tomography (ET), a transmission electron microscopy-based approach, yields isotropic voxels at full EM resolution, but requires deposition of sections on electron-stable thin and fragile films, thus making screening of large section libraries difficult and prone to section loss. To combine the strength of both approaches, we developed 'ATUM-Tomo, a hybrid method, where sections are first reversibly attached to plastic tape via a dissolvable coating, and after screening detached and transferred to the ET-compatible thin films. As a proof-of-principle, we applied correlative ATUM-Tomo to study ultrastructural features of blood-brain barrier (BBB) leakiness around microthrombi in a mouse model of traumatic brain injury. Microthrombi and associated sites of BBB leakiness were identified by confocal imaging of injected fluorescent and electron-dense nanoparticles, then relocalized by ATUM-SEM, and finally interrogated by correlative ATUM-Tomo. Overall, our new ATUM-Tomo approach will substantially advance ultrastructural analysis of biological phenomena that require cell- and tissue-level contextualization of the finest subcellular textures.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a CLEM
|2 Other
650 _ 7 |a array tomography
|2 Other
650 _ 7 |a blood brain barrier
|2 Other
650 _ 7 |a cell biology
|2 Other
650 _ 7 |a correlation
|2 Other
650 _ 7 |a imaging
|2 Other
650 _ 7 |a mouse
|2 Other
650 _ 7 |a neuroscience
|2 Other
650 _ 7 |a volume electron microscopy
|2 Other
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Electron Microscope Tomography: methods
|2 MeSH
650 _ 2 |a Blood-Brain Barrier: ultrastructure
|2 MeSH
650 _ 2 |a Cerebral Cortex: diagnostic imaging
|2 MeSH
650 _ 2 |a Cerebral Cortex: ultrastructure
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Microscopy, Electron, Scanning: methods
|2 MeSH
650 _ 2 |a Microtomy
|2 MeSH
700 1 _ |a Fabig, Gunar
|0 0000-0003-3017-0978
|b 1
700 1 _ |a Wehn, Antonia
|b 2
700 1 _ |a Rodriguez, Lucia
|0 P:(DE-2719)9001702
|b 3
|u dzne
700 1 _ |a Jiang, Hanyi
|0 P:(DE-2719)9001710
|b 4
|u dzne
700 1 _ |a Niemann, Cornelia
|0 P:(DE-2719)9001883
|b 5
|u dzne
700 1 _ |a Klymchenko, Andrey S
|b 6
700 1 _ |a Plesnila, Nikolaus
|0 P:(DE-2719)9000853
|b 7
700 1 _ |a Misgeld, Thomas
|0 P:(DE-2719)2810727
|b 8
700 1 _ |a Müller-Reichert, Thomas
|0 0000-0003-0203-1436
|b 9
700 1 _ |a Khalin, Igor
|b 10
700 1 _ |a Schifferer, Martina
|0 P:(DE-2719)2812260
|b 11
|e Last author
773 _ _ |a 10.7554/eLife.90565
|g Vol. 12, p. RP90565
|0 PERI:(DE-600)2687154-3
|p RP90565
|t eLife
|v 12
|y 2024
|x 2050-084X
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/271081/files/DZNE-2024-00953%2BSUP.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/271081/files/DZNE-2024-00953%2BSUP.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:271081
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9000614
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9001702
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9001710
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)9001883
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2810727
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)2812260
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELIFE : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-23T12:20:44Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-22
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELIFE : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-09-23T12:20:44Z
920 1 _ |0 I:(DE-2719)1110000-4
|k AG Misgeld
|l Neuronal Cell Biology
|x 0
920 1 _ |0 I:(DE-2719)1110008
|k AG Simons
|l Molecular Neurobiology
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1110000-4
980 _ _ |a I:(DE-2719)1110008
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21