000271116 001__ 271116
000271116 005__ 20240923164113.0
000271116 0247_ $$2doi$$a10.1214/24-EJS2254
000271116 037__ $$aDZNE-2024-00984
000271116 082__ $$a310
000271116 1001_ $$aGöbler, Konstantin$$b0
000271116 245__ $$aHigh-dimensional undirected graphical models for arbitrary mixed data
000271116 260__ $$aIthaca, NY$$bCornell University Library$$c2024
000271116 3367_ $$2DRIVER$$aarticle
000271116 3367_ $$2DataCite$$aOutput Types/Journal article
000271116 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1723715490_26249
000271116 3367_ $$2BibTeX$$aARTICLE
000271116 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000271116 3367_ $$00$$2EndNote$$aJournal Article
000271116 520__ $$aGraphical models are an important tool in exploring relationships between variables in complex, multivariate data. Methods for learning such graphical models are well-developed in the case where all variables are either continuous or discrete, including in high dimensions. However, in many applications, data span variables of different types (e.g., continuous, count, binary, ordinal, etc.), whose principled joint analysis is nontrivial. Latent Gaussian copula models, in which all variables are modeled as transformations of underlying jointly Gaussian variables, represent a useful approach. Recent advances have shown how the binary-continuous case can be tackled, but the general mixed variable type regime remains challenging. In this work, we make the simple but useful observation that classical ideas concerning polychoric and polyserial correlations can be leveraged in a latent Gaussian copula framework. Building on this observation, we propose a flexible and scalable methodology for data with variables of entirely general mixed type. We study the key properties of the approaches theoretically and empirically.
000271116 536__ $$0G:(DE-HGF)POF4-354$$a354 - Disease Prevention and Healthy Aging (POF4-354)$$cPOF4-354$$fPOF IV$$x0
000271116 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000271116 7001_ $$aDrton, Mathias$$b1
000271116 7001_ $$0P:(DE-2719)2811372$$aMukherjee, Sach$$b2$$udzne
000271116 7001_ $$0P:(DE-2719)9000669$$aMiloschewski, Anne$$b3$$eLast author$$udzne
000271116 773__ $$0PERI:(DE-600)2381001-4$$a10.1214/24-EJS2254$$gVol. 18, no. 1$$n1$$p2339 - 2404$$tElectronic journal of statistics$$v18$$x1935-7524$$y2024
000271116 8564_ $$uhttps://pub.dzne.de/record/271116/files/DZNE-2024-00984.pdf$$yOpenAccess
000271116 8564_ $$uhttps://pub.dzne.de/record/271116/files/DZNE-2024-00984.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000271116 909CO $$ooai:pub.dzne.de:271116$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000271116 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811372$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000271116 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000669$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000271116 9131_ $$0G:(DE-HGF)POF4-354$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Prevention and Healthy Aging$$x0
000271116 9141_ $$y2024
000271116 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
000271116 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
000271116 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000271116 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTRON J STAT : 2022$$d2023-10-25
000271116 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-01-21T11:29:53Z
000271116 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-01-21T11:29:53Z
000271116 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
000271116 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-25
000271116 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
000271116 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-25
000271116 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000271116 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-01-21T11:29:53Z
000271116 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-25
000271116 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25
000271116 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
000271116 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
000271116 9201_ $$0I:(DE-2719)1013030$$kAG Mukherjee$$lStatistics and Machine Learning$$x0
000271116 980__ $$ajournal
000271116 980__ $$aVDB
000271116 980__ $$aUNRESTRICTED
000271116 980__ $$aI:(DE-2719)1013030
000271116 9801_ $$aFullTexts