001     271116
005     20240923164113.0
024 7 _ |a 10.1214/24-EJS2254
|2 doi
037 _ _ |a DZNE-2024-00984
082 _ _ |a 310
100 1 _ |a Göbler, Konstantin
|b 0
245 _ _ |a High-dimensional undirected graphical models for arbitrary mixed data
260 _ _ |a Ithaca, NY
|c 2024
|b Cornell University Library
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1723715490_26249
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Graphical models are an important tool in exploring relationships between variables in complex, multivariate data. Methods for learning such graphical models are well-developed in the case where all variables are either continuous or discrete, including in high dimensions. However, in many applications, data span variables of different types (e.g., continuous, count, binary, ordinal, etc.), whose principled joint analysis is nontrivial. Latent Gaussian copula models, in which all variables are modeled as transformations of underlying jointly Gaussian variables, represent a useful approach. Recent advances have shown how the binary-continuous case can be tackled, but the general mixed variable type regime remains challenging. In this work, we make the simple but useful observation that classical ideas concerning polychoric and polyserial correlations can be leveraged in a latent Gaussian copula framework. Building on this observation, we propose a flexible and scalable methodology for data with variables of entirely general mixed type. We study the key properties of the approaches theoretically and empirically.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: pub.dzne.de
700 1 _ |a Drton, Mathias
|b 1
700 1 _ |a Mukherjee, Sach
|0 P:(DE-2719)2811372
|b 2
|u dzne
700 1 _ |a Miloschewski, Anne
|0 P:(DE-2719)9000669
|b 3
|e Last author
|u dzne
773 _ _ |a 10.1214/24-EJS2254
|g Vol. 18, no. 1
|0 PERI:(DE-600)2381001-4
|n 1
|p 2339 - 2404
|t Electronic journal of statistics
|v 18
|y 2024
|x 1935-7524
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/271116/files/DZNE-2024-00984.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/271116/files/DZNE-2024-00984.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:271116
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2811372
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9000669
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELECTRON J STAT : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-01-21T11:29:53Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-01-21T11:29:53Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-01-21T11:29:53Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
920 1 _ |0 I:(DE-2719)1013030
|k AG Mukherjee
|l Statistics and Machine Learning
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013030
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21