001     271138
005     20240816121456.0
024 7 _ |a 10.56553/popets-2024-0062
|2 doi
037 _ _ |a DZNE-2024-01006
082 _ _ |a 004
100 1 _ |a Chen, Dingfan
|b 0
245 _ _ |a Towards Biologically Plausible and Private Gene Expression Data Generation
260 _ _ |a Warsaw, Poland
|c 2024
|b De Gruyter Open
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1723718977_26248
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Generative models trained with Differential Privacy (DP) are becoming increasingly prominent in the creation of synthetic data for downstream applications. Existing literature, however, primarily focuses on basic benchmarking datasets and tends to report promising results only for elementary metrics and relatively simple data distributions. In this paper, we initiate a systematic analysis of how DP generative models perform in their natural application scenarios, specifically focusing on real-world gene expression data. We conduct a comprehensive analysis of five representative DP generation methods, examining them from various angles, such as downstream utility, statistical properties, and biological plausibility. Our extensive evaluation illuminates the unique characteristics of each DP generation method, offering critical insights into the strengths and weaknesses of each approach, and uncovering intriguing possibilities for future developments. Perhaps surprisingly, our analysis reveals that most methods are capable of achieving seemingly reasonable downstream utility, according to the standard evaluation metrics considered in existing literature. Nevertheless, we find that none of the DP methods are able to accurately capture the biological characteristics of the real dataset. This observation suggests a potential over-optimistic assessment of current methodologies in this field and underscores a pressing need for future enhancements in model design.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: pub.dzne.de
700 1 _ |a Oestreich, Marie
|0 P:(DE-2719)9002070
|b 1
|u dzne
700 1 _ |a Afonja, Tejumade
|b 2
700 1 _ |a Kerkouche, Raouf
|b 3
700 1 _ |a Becker, Matthias
|0 P:(DE-2719)2812750
|b 4
|u dzne
700 1 _ |a Fritz, Mario
|b 5
773 _ _ |a 10.56553/popets-2024-0062
|g Vol. 2024, no. 2, p. 531 - 554
|0 PERI:(DE-600)2877594-6
|n 2
|p 531 - 554
|t Proceedings on privacy enhancing technologies
|v 2024
|y 2024
|x 2299-0984
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/271138/files/DZNE-2024-01006.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/271138/files/DZNE-2024-01006.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:271138
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9002070
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2812750
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-09-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-2719)1013038
|k AG Schultze
|l Clinical Single Cell Omics (CSCO) / Systems Medicine
|x 0
920 1 _ |0 I:(DE-2719)5000079
|k AG Becker
|l Modular High Performance Computing and Artificial Intelligence
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013038
980 _ _ |a I:(DE-2719)5000079
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21