Home > Publications Database > AAontology: An Ontology of Amino Acid Scales for Interpretable Machine Learning > print |
001 | 271147 | ||
005 | 20250720001526.0 | ||
024 | 7 | _ | |a pmid:39053689 |2 pmid |
024 | 7 | _ | |a 10.1016/j.jmb.2024.168717 |2 doi |
024 | 7 | _ | |a 0022-2836 |2 ISSN |
024 | 7 | _ | |a 1089-8638 |2 ISSN |
024 | 7 | _ | |a altmetric:179433842 |2 altmetric |
037 | _ | _ | |a DZNE-2024-01015 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Breimann, Stephan |0 P:(DE-2719)9001161 |b 0 |e First author |u dzne |
245 | _ | _ | |a AAontology: An Ontology of Amino Acid Scales for Interpretable Machine Learning |
260 | _ | _ | |a Amsterdam [u.a.] |c 2024 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1752744005_26701 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Amino acid scales are crucial for protein prediction tasks, many of them being curated in the AAindex database. Despite various clustering attempts to organize them and to better understand their relationships, these approaches lack the fine-grained classification necessary for satisfactory interpretability in many protein prediction problems. To address this issue, we developed AAontology-a two-level classification for 586 amino acid scales (mainly from AAindex) together with an in-depth analysis of their relations-using bag-of-word-based classification, clustering, and manual refinement over multiple iterations. AAontology organizes physicochemical scales into 8 categories and 67 subcategories, enhancing the interpretability of scale-based machine learning methods in protein bioinformatics. Thereby it enables researchers to gain a deeper biological insight. We anticipate that AAontology will be a building block to link amino acid properties with protein function and dysfunctions as well as aid informed decision-making in mutation analysis or protein drug design. |
536 | _ | _ | |a 352 - Disease Mechanisms (POF4-352) |0 G:(DE-HGF)POF4-352 |c POF4-352 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: pub.dzne.de |
650 | _ | 2 | |a Machine Learning |2 MeSH |
650 | _ | 2 | |a Amino Acids: chemistry |2 MeSH |
650 | _ | 2 | |a Computational Biology: methods |2 MeSH |
650 | _ | 2 | |a Proteins: chemistry |2 MeSH |
650 | _ | 2 | |a Proteins: metabolism |2 MeSH |
650 | _ | 2 | |a Databases, Protein |2 MeSH |
650 | _ | 2 | |a Cluster Analysis |2 MeSH |
700 | 1 | _ | |a Kamp, Frits |b 1 |
700 | 1 | _ | |a Steiner, Harald |0 P:(DE-2719)2000023 |b 2 |u dzne |
700 | 1 | _ | |a Frishman, Dmitrij |b 3 |
773 | _ | _ | |a 10.1016/j.jmb.2024.168717 |g Vol. 436, no. 19, p. 168717 - |0 PERI:(DE-600)1355192-9 |n 19 |p 168717 |t Journal of molecular biology |v 436 |y 2024 |x 0022-2836 |
787 | 0 | _ | |a Breimann, Stephan |d Zenodo, 2025 |i RelatedTo |0 DZNE-2025-00862 |r |t AAanalysis, v1.0.0 |
856 | 4 | _ | |u https://pub.dzne.de/record/271147/files/DZNE-2024-01015%20SUP.zip |
856 | 4 | _ | |u https://pub.dzne.de/record/271147/files/DZNE-2024-01015.pdf |y OpenAccess |
856 | 4 | _ | |u https://pub.dzne.de/record/271147/files/DZNE-2024-01015.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:pub.dzne.de:271147 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 0 |6 P:(DE-2719)9001161 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 2 |6 P:(DE-2719)2000023 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-352 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Mechanisms |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-29 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J MOL BIOL : 2022 |d 2023-08-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-29 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J MOL BIOL : 2022 |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-08-29 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-29 |
920 | 1 | _ | |0 I:(DE-2719)1110007 |k AG Haass |l Molecular Neurodegeneration |x 0 |
920 | 1 | _ | |0 I:(DE-2719)1110000-1 |k AG Steiner |l Biochemistry of γ-Secretase |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-2719)1110007 |
980 | _ | _ | |a I:(DE-2719)1110000-1 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|