000271286 001__ 271286
000271286 005__ 20240901004622.0
000271286 0247_ $$2doi$$a10.1093/gerona/glae135
000271286 0247_ $$2pmid$$apmid:39126297
000271286 0247_ $$2pmc$$apmc:PMC11316208
000271286 0247_ $$2ISSN$$a1079-5006
000271286 0247_ $$2ISSN$$a1758-535X
000271286 0247_ $$2altmetric$$aaltmetric:166210006
000271286 037__ $$aDZNE-2024-01025
000271286 041__ $$aEnglish
000271286 082__ $$a570
000271286 1001_ $$aBartolomucci, Alessandro$$b0
000271286 245__ $$aAnimal Models Relevant for Geroscience: Current Trends and Future Perspectives in Biomarkers, and Measures of Biological Aging.
000271286 260__ $$aOxford [u.a.]$$bOxford Univ. Pr.$$c2024
000271286 3367_ $$2DRIVER$$aarticle
000271286 3367_ $$2DataCite$$aOutput Types/Journal article
000271286 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1724748153_30327$$xReview Article
000271286 3367_ $$2BibTeX$$aARTICLE
000271286 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000271286 3367_ $$00$$2EndNote$$aJournal Article
000271286 520__ $$aFor centuries, aging was considered inevitable and immutable. Geroscience provides the conceptual framework to shift this focus toward a new view that regards aging as an active biological process, and the biological age of an individual as a modifiable entity. Significant steps forward have been made toward the identification of biomarkers for and measures of biological age, yet knowledge gaps in geroscience are still numerous. Animal models of aging are the focus of this perspective, which discusses how experimental design can be optimized to inform and refine the development of translationally relevant measures and biomarkers of biological age. We provide recommendations to the field, including: the design of longitudinal studies in which subjects are deeply phenotyped via repeated multilevel behavioral/social/molecular assays; the need to consider sociobehavioral variables relevant for the species studied; and finally, the importance of assessing age of onset, severity of pathologies, and age-at-death. We highlight approaches to integrate biomarkers and measures of functional impairment using machine learning approaches designed to estimate biological age as well as to predict future health declines and mortality. We expect that advances in animal models of aging will be crucial for the future of translational geroscience but also for the next chapter of medicine.
000271286 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000271286 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000271286 650_7 $$2Other$$aAnimal model
000271286 650_7 $$2Other$$aBiomarkers
000271286 650_7 $$2Other$$aFrailty
000271286 650_7 $$2Other$$aSenescence
000271286 650_7 $$2NLM Chemicals$$aBiomarkers
000271286 650_2 $$2MeSH$$aBiomarkers
000271286 650_2 $$2MeSH$$aAnimals
000271286 650_2 $$2MeSH$$aAging: physiology
000271286 650_2 $$2MeSH$$aModels, Animal
000271286 650_2 $$2MeSH$$aGeroscience
000271286 650_2 $$2MeSH$$aHumans
000271286 7001_ $$aKane, Alice E$$b1
000271286 7001_ $$aGaydosh, Lauren$$b2
000271286 7001_ $$aRazzoli, Maria$$b3
000271286 7001_ $$00000-0003-1988-3248$$aMcCoy, Brianah M$$b4
000271286 7001_ $$0P:(DE-2719)2289209$$aEhninger, Dan$$b5$$udzne
000271286 7001_ $$aChen, Brian H$$b6
000271286 7001_ $$00000-0001-5351-6308$$aHowlett, Susan E$$b7
000271286 7001_ $$aSnyder-Mackler, Noah$$b8
000271286 773__ $$0PERI:(DE-600)2043927-1$$a10.1093/gerona/glae135$$gVol. 79, no. 9, p. glae135$$n9$$pglae135$$tThe journals of gerontology / Series A$$v79$$x1079-5006$$y2024
000271286 8564_ $$uhttps://pub.dzne.de/record/271286/files/DZNE-2024-01025_Restricted.pdf
000271286 8564_ $$uhttps://pub.dzne.de/record/271286/files/DZNE-2024-01025_Restricted.pdf?subformat=pdfa$$xpdfa
000271286 909CO $$ooai:pub.dzne.de:271286$$pVDB
000271286 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2289209$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000271286 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000271286 9141_ $$y2024
000271286 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-24$$wger
000271286 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
000271286 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-24
000271286 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
000271286 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
000271286 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
000271286 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-24
000271286 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2023-10-24
000271286 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
000271286 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2023-10-24
000271286 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ GERONTOL A-BIOL : 2022$$d2023-10-24
000271286 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
000271286 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-24
000271286 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-24
000271286 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ GERONTOL A-BIOL : 2022$$d2023-10-24
000271286 9201_ $$0I:(DE-2719)1013005$$kAG Ehninger$$lTranslational Biogerontology$$x0
000271286 980__ $$ajournal
000271286 980__ $$aVDB
000271286 980__ $$aI:(DE-2719)1013005
000271286 980__ $$aUNRESTRICTED