001     271286
005     20240901004622.0
024 7 _ |a 10.1093/gerona/glae135
|2 doi
024 7 _ |a pmid:39126297
|2 pmid
024 7 _ |a pmc:PMC11316208
|2 pmc
024 7 _ |a 1079-5006
|2 ISSN
024 7 _ |a 1758-535X
|2 ISSN
024 7 _ |a altmetric:166210006
|2 altmetric
037 _ _ |a DZNE-2024-01025
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Bartolomucci, Alessandro
|b 0
245 _ _ |a Animal Models Relevant for Geroscience: Current Trends and Future Perspectives in Biomarkers, and Measures of Biological Aging.
260 _ _ |a Oxford [u.a.]
|c 2024
|b Oxford Univ. Pr.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1724748153_30327
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For centuries, aging was considered inevitable and immutable. Geroscience provides the conceptual framework to shift this focus toward a new view that regards aging as an active biological process, and the biological age of an individual as a modifiable entity. Significant steps forward have been made toward the identification of biomarkers for and measures of biological age, yet knowledge gaps in geroscience are still numerous. Animal models of aging are the focus of this perspective, which discusses how experimental design can be optimized to inform and refine the development of translationally relevant measures and biomarkers of biological age. We provide recommendations to the field, including: the design of longitudinal studies in which subjects are deeply phenotyped via repeated multilevel behavioral/social/molecular assays; the need to consider sociobehavioral variables relevant for the species studied; and finally, the importance of assessing age of onset, severity of pathologies, and age-at-death. We highlight approaches to integrate biomarkers and measures of functional impairment using machine learning approaches designed to estimate biological age as well as to predict future health declines and mortality. We expect that advances in animal models of aging will be crucial for the future of translational geroscience but also for the next chapter of medicine.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Animal model
|2 Other
650 _ 7 |a Biomarkers
|2 Other
650 _ 7 |a Frailty
|2 Other
650 _ 7 |a Senescence
|2 Other
650 _ 7 |a Biomarkers
|2 NLM Chemicals
650 _ 2 |a Biomarkers
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Aging: physiology
|2 MeSH
650 _ 2 |a Models, Animal
|2 MeSH
650 _ 2 |a Geroscience
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
700 1 _ |a Kane, Alice E
|b 1
700 1 _ |a Gaydosh, Lauren
|b 2
700 1 _ |a Razzoli, Maria
|b 3
700 1 _ |a McCoy, Brianah M
|0 0000-0003-1988-3248
|b 4
700 1 _ |a Ehninger, Dan
|0 P:(DE-2719)2289209
|b 5
|u dzne
700 1 _ |a Chen, Brian H
|b 6
700 1 _ |a Howlett, Susan E
|0 0000-0001-5351-6308
|b 7
700 1 _ |a Snyder-Mackler, Noah
|b 8
773 _ _ |a 10.1093/gerona/glae135
|g Vol. 79, no. 9, p. glae135
|0 PERI:(DE-600)2043927-1
|n 9
|p glae135
|t The journals of gerontology / Series A
|v 79
|y 2024
|x 1079-5006
856 4 _ |u https://pub.dzne.de/record/271286/files/DZNE-2024-01025_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/271286/files/DZNE-2024-01025_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:pub.dzne.de:271286
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2289209
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2024
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-24
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
|d 2023-10-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J GERONTOL A-BIOL : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J GERONTOL A-BIOL : 2022
|d 2023-10-24
920 1 _ |0 I:(DE-2719)1013005
|k AG Ehninger
|l Translational Biogerontology
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1013005
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21