000271336 001__ 271336
000271336 005__ 20240901004630.0
000271336 0247_ $$2doi$$a10.1002/glia.24588
000271336 0247_ $$2pmid$$apmid:38946065
000271336 0247_ $$2ISSN$$a0894-1491
000271336 0247_ $$2ISSN$$a1098-1136
000271336 0247_ $$2altmetric$$aaltmetric:164963008
000271336 037__ $$aDZNE-2024-01038
000271336 041__ $$aEnglish
000271336 082__ $$a610
000271336 1001_ $$0P:(DE-2719)9001455$$aCangalaya, Carla$$b0$$eFirst author$$udzne
000271336 245__ $$aIntegrity of neural extracellular matrix is required for microglia-mediated synaptic remodeling.
000271336 260__ $$aBognor Regis [u.a.]$$bWiley-Liss$$c2024
000271336 3367_ $$2DRIVER$$aarticle
000271336 3367_ $$2DataCite$$aOutput Types/Journal article
000271336 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1724754588_30327
000271336 3367_ $$2BibTeX$$aARTICLE
000271336 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000271336 3367_ $$00$$2EndNote$$aJournal Article
000271336 520__ $$aMicroglia continuously remodel synapses, which are embedded in the extracellular matrix (ECM). However, the mechanisms, which govern this process remain elusive. To investigate the influence of the neural ECM in synaptic remodeling by microglia, we disrupted ECM integrity by injection of chondroitinase ABC (ChABC) into the retrosplenial cortex of healthy adult mice. Using in vivo two-photon microscopy we found that ChABC treatment increased microglial branching complexity and ECM phagocytic capacity and decreased spine elimination rate under basal conditions. Moreover, ECM attenuation largely prevented synaptic remodeling following synaptic stress induced by photodamage of single synaptic elements. These changes were associated with less stable and smaller microglial contacts at the synaptic damage sites, diminished deposition of calreticulin and complement proteins C1q and C3 at synapses and impaired expression of microglial CR3 receptor. Thus, our findings provide novel insights into the function of the neural ECM in deposition of complement proteins and synaptic remodeling by microglia.
000271336 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000271336 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000271336 650_7 $$2Other$$aC1q
000271336 650_7 $$2Other$$aC3
000271336 650_7 $$2Other$$acomplement protein
000271336 650_7 $$2Other$$aextracellular matrix
000271336 650_7 $$2Other$$amicroglia
000271336 650_7 $$2Other$$aspine
000271336 650_7 $$2Other$$asynapse
000271336 650_7 $$2Other$$atwo‐photon microscopy
000271336 650_7 $$080295-33-6$$2NLM Chemicals$$aComplement C1q
000271336 650_7 $$0EC 4.2.2.20$$2NLM Chemicals$$aChondroitin ABC Lyase
000271336 650_7 $$2NLM Chemicals$$aComplement C3
000271336 650_7 $$2NLM Chemicals$$aCalreticulin
000271336 650_7 $$2NLM Chemicals$$aMacrophage-1 Antigen
000271336 650_2 $$2MeSH$$aAnimals
000271336 650_2 $$2MeSH$$aMicroglia: metabolism
000271336 650_2 $$2MeSH$$aMicroglia: drug effects
000271336 650_2 $$2MeSH$$aExtracellular Matrix: metabolism
000271336 650_2 $$2MeSH$$aExtracellular Matrix: drug effects
000271336 650_2 $$2MeSH$$aSynapses: metabolism
000271336 650_2 $$2MeSH$$aSynapses: drug effects
000271336 650_2 $$2MeSH$$aSynapses: physiology
000271336 650_2 $$2MeSH$$aComplement C1q: metabolism
000271336 650_2 $$2MeSH$$aMice, Inbred C57BL
000271336 650_2 $$2MeSH$$aChondroitin ABC Lyase: pharmacology
000271336 650_2 $$2MeSH$$aMice
000271336 650_2 $$2MeSH$$aNeuronal Plasticity: physiology
000271336 650_2 $$2MeSH$$aNeuronal Plasticity: drug effects
000271336 650_2 $$2MeSH$$aComplement C3: metabolism
000271336 650_2 $$2MeSH$$aCalreticulin: metabolism
000271336 650_2 $$2MeSH$$aMale
000271336 650_2 $$2MeSH$$aPhagocytosis: physiology
000271336 650_2 $$2MeSH$$aPhagocytosis: drug effects
000271336 650_2 $$2MeSH$$aMice, Transgenic
000271336 650_2 $$2MeSH$$aMacrophage-1 Antigen: metabolism
000271336 7001_ $$0P:(DE-2719)2811509$$aSun, Weilun$$b1$$udzne
000271336 7001_ $$0P:(DE-2719)2809920$$aStoyanov, Stoyan Borislavov$$b2
000271336 7001_ $$00000-0002-9900-8605$$aDunay, Ildiko Rita$$b3
000271336 7001_ $$0P:(DE-2719)2810577$$aDityatev, Alexander$$b4$$eLast author
000271336 773__ $$0PERI:(DE-600)1474828-9$$a10.1002/glia.24588$$gVol. 72, no. 10, p. 1874 - 1892$$n10$$p1874 - 1892$$tGlia$$v72$$x0894-1491$$y2024
000271336 8564_ $$uhttps://pub.dzne.de/record/271336/files/DZNE-2024-01038%20SUP1.xlsx
000271336 8564_ $$uhttps://pub.dzne.de/record/271336/files/DZNE-2024-01038%20SUP2.xlsx
000271336 8564_ $$uhttps://pub.dzne.de/record/271336/files/DZNE-2024-01038%20SUP3.docx
000271336 8564_ $$uhttps://pub.dzne.de/record/271336/files/DZNE-2024-01038.pdf$$yOpenAccess
000271336 8564_ $$uhttps://pub.dzne.de/record/271336/files/DZNE-2024-01038%20SUP1.csv
000271336 8564_ $$uhttps://pub.dzne.de/record/271336/files/DZNE-2024-01038%20SUP1.ods
000271336 8564_ $$uhttps://pub.dzne.de/record/271336/files/DZNE-2024-01038%20SUP1.xls
000271336 8564_ $$uhttps://pub.dzne.de/record/271336/files/DZNE-2024-01038%20SUP2.csv
000271336 8564_ $$uhttps://pub.dzne.de/record/271336/files/DZNE-2024-01038%20SUP2.ods
000271336 8564_ $$uhttps://pub.dzne.de/record/271336/files/DZNE-2024-01038%20SUP2.xls
000271336 8564_ $$uhttps://pub.dzne.de/record/271336/files/DZNE-2024-01038%20SUP3.doc
000271336 8564_ $$uhttps://pub.dzne.de/record/271336/files/DZNE-2024-01038%20SUP3.odt
000271336 8564_ $$uhttps://pub.dzne.de/record/271336/files/DZNE-2024-01038%20SUP3.pdf
000271336 8564_ $$uhttps://pub.dzne.de/record/271336/files/DZNE-2024-01038.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000271336 909CO $$ooai:pub.dzne.de:271336$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000271336 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001455$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000271336 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811509$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000271336 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2809920$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000271336 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810577$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000271336 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000271336 9141_ $$y2024
000271336 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
000271336 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
000271336 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-24
000271336 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-24
000271336 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000271336 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGLIA : 2022$$d2023-08-24
000271336 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-24$$wger
000271336 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
000271336 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-24
000271336 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
000271336 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000271336 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGLIA : 2022$$d2023-08-24
000271336 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
000271336 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-24$$wger
000271336 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
000271336 9201_ $$0I:(DE-2719)1310007$$kAG Dityatev$$lMolecular Neuroplasticity$$x0
000271336 980__ $$ajournal
000271336 980__ $$aVDB
000271336 980__ $$aUNRESTRICTED
000271336 980__ $$aI:(DE-2719)1310007
000271336 9801_ $$aFullTexts