001     271706
005     20250127091627.0
024 7 _ |a pmc:PMC11384960
|2 pmc
024 7 _ |a 10.1016/j.xcrm.2024.101669
|2 doi
024 7 _ |a pmid:39127040
|2 pmid
024 7 _ |a altmetric:166141083
|2 altmetric
037 _ _ |a DZNE-2024-01058
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Levites, Yona
|b 0
245 _ _ |a Integrative proteomics identifies a conserved Aβ amyloid responsome, novel plaque proteins, and pathology modifiers in Alzheimer's disease.
260 _ _ |a Maryland Heights, MO
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1725271159_32477
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Alzheimer's disease (AD) is a complex neurodegenerative disorder that develops over decades. AD brain proteomics reveals vast alterations in protein levels and numerous altered biologic pathways. Here, we compare AD brain proteome and network changes with the brain proteomes of amyloid β (Aβ)-depositing mice to identify conserved and divergent protein networks with the conserved networks identifying an Aβ amyloid responsome. Proteins in the most conserved network (M42) accumulate in plaques, cerebrovascular amyloid (CAA), and/or dystrophic neuronal processes, and overexpression of two M42 proteins, midkine (Mdk) and pleiotrophin (PTN), increases the accumulation of Aβ in plaques and CAA. M42 proteins bind amyloid fibrils in vitro, and MDK and PTN co-accumulate with cardiac transthyretin amyloid. M42 proteins appear intimately linked to amyloid deposition and can regulate amyloid deposition, suggesting that they are pathology modifiers and thus putative therapeutic targets. We posit that amyloid-scaffolded accumulation of numerous M42+ proteins is a central mechanism mediating downstream pathophysiology in AD.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Alzheimer’s disease
|2 Other
650 _ 7 |a Midkine
|2 Other
650 _ 7 |a Pleiotrophin
|2 Other
650 _ 7 |a aggregation
|2 Other
650 _ 7 |a amyloid
|2 Other
650 _ 7 |a animal models
|2 Other
650 _ 7 |a plaques
|2 Other
650 _ 7 |a proteomics
|2 Other
650 _ 7 |a Amyloid beta-Peptides
|2 NLM Chemicals
650 _ 7 |a Proteome
|2 NLM Chemicals
650 _ 7 |a pleiotrophin
|0 134034-50-7
|2 NLM Chemicals
650 _ 7 |a Carrier Proteins
|2 NLM Chemicals
650 _ 7 |a Cytokines
|2 NLM Chemicals
650 _ 2 |a Alzheimer Disease: metabolism
|2 MeSH
650 _ 2 |a Alzheimer Disease: pathology
|2 MeSH
650 _ 2 |a Alzheimer Disease: genetics
|2 MeSH
650 _ 2 |a Proteomics: methods
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Amyloid beta-Peptides: metabolism
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Plaque, Amyloid: metabolism
|2 MeSH
650 _ 2 |a Plaque, Amyloid: pathology
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Brain: metabolism
|2 MeSH
650 _ 2 |a Brain: pathology
|2 MeSH
650 _ 2 |a Proteome: metabolism
|2 MeSH
650 _ 2 |a Mice, Transgenic
|2 MeSH
650 _ 2 |a Carrier Proteins: metabolism
|2 MeSH
650 _ 2 |a Carrier Proteins: genetics
|2 MeSH
650 _ 2 |a Cytokines: metabolism
|2 MeSH
650 _ 2 |a Male
|2 MeSH
700 1 _ |a Dammer, Eric B
|b 1
700 1 _ |a Ran, Yong
|b 2
700 1 _ |a Tsering, Wangchen
|b 3
700 1 _ |a Duong, Duc
|b 4
700 1 _ |a Abreha, Measho
|b 5
700 1 _ |a Gadhavi, Joshna
|b 6
700 1 _ |a Lolo, Kiara
|b 7
700 1 _ |a Trejo-Lopez, Jorge
|b 8
700 1 _ |a Phillips, Jennifer
|b 9
700 1 _ |a Iturbe, Andrea
|b 10
700 1 _ |a Erquizi, Aya
|b 11
700 1 _ |a Moore, Brenda D
|b 12
700 1 _ |a Ryu, Danny
|b 13
700 1 _ |a Natu, Aditya
|b 14
700 1 _ |a Dillon, Kristy
|b 15
700 1 _ |a Torrellas, Jose
|b 16
700 1 _ |a Moran, Corey
|b 17
700 1 _ |a Ladd, Thomas
|b 18
700 1 _ |a Afroz, Farhana
|b 19
700 1 _ |a Islam, Tariful
|b 20
700 1 _ |a Jagirdar, Jaishree
|b 21
700 1 _ |a Funk, Cory C
|b 22
700 1 _ |a Robinson, Max
|b 23
700 1 _ |a Rangaraju, Srikant
|b 24
700 1 _ |a Borchelt, David R
|b 25
700 1 _ |a Ertekin-Taner, Nilüfer
|b 26
700 1 _ |a Kelly, Jeffrey W
|b 27
700 1 _ |a Heppner, Frank L
|0 P:(DE-2719)2812386
|b 28
|u dzne
700 1 _ |a Johnson, Erik C B
|b 29
700 1 _ |a McFarland, Karen
|b 30
700 1 _ |a Levey, Allan I
|b 31
700 1 _ |a Prokop, Stefan
|b 32
700 1 _ |a Seyfried, Nicholas T
|b 33
700 1 _ |a Golde, Todd E
|b 34
773 _ _ |a 10.1016/j.xcrm.2024.101669
|g Vol. 5, no. 8, p. 101669 -
|0 PERI:(DE-600)3019420-9
|n 8
|p 101669
|t Cell reports / Medicine
|v 5
|y 2024
|x 2666-3791
856 4 _ |u https://pub.dzne.de/record/271706/files/DZNE-2024-01058%20SUP.zip
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/271706/files/DZNE-2024-01058.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/271706/files/DZNE-2024-01058.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:271706
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 28
|6 P:(DE-2719)2812386
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL REP MED : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-22
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b CELL REP MED : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:51:29Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:51:29Z
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:51:29Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
920 1 _ |0 I:(DE-2719)1810007
|k AG Heppner
|l Neuroimmunology
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1810007
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21