001     271713
005     20250127091733.0
024 7 _ |a 10.1016/j.neuron.2024.05.027
|2 doi
024 7 _ |a pmid:38878768
|2 pmid
024 7 _ |a pmc:PMC11343662
|2 pmc
024 7 _ |a 0896-6273
|2 ISSN
024 7 _ |a 1097-4199
|2 ISSN
024 7 _ |a altmetric:164550770
|2 altmetric
037 _ _ |a DZNE-2024-01065
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Dunot, Jade
|b 0
245 _ _ |a APP fragment controls both ionotropic and non-ionotropic signaling of NMDA receptors.
260 _ _ |a New York, NY
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1725441246_24435
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a NMDA receptors (NMDARs) are ionotropic receptors crucial for brain information processing. Yet, evidence also supports an ion-flux-independent signaling mode mediating synaptic long-term depression (LTD) and spine shrinkage. Here, we identify AETA (Aη), an amyloid-β precursor protein (APP) cleavage product, as an NMDAR modulator with the unique dual regulatory capacity to impact both signaling modes. AETA inhibits ionotropic NMDAR activity by competing with the co-agonist and induces an intracellular conformational modification of GluN1 subunits. This favors non-ionotropic NMDAR signaling leading to enhanced LTD and favors spine shrinkage. Endogenously, AETA production is increased by in vivo chemogenetically induced neuronal activity. Genetic deletion of AETA production alters NMDAR transmission and prevents LTD, phenotypes rescued by acute exogenous AETA application. This genetic deletion also impairs contextual fear memory. Our findings demonstrate AETA-dependent NMDAR activation (ADNA), characterizing AETA as a unique type of endogenous NMDAR modulator that exerts bidirectional control over NMDAR signaling and associated information processing.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a APP
|2 Other
650 _ 7 |a NMDA receptors
|2 Other
650 _ 7 |a amyloid-β precursor protein
|2 Other
650 _ 7 |a eta-secretase
|2 Other
650 _ 7 |a hippocampus
|2 Other
650 _ 7 |a long-term depression
|2 Other
650 _ 7 |a memory
|2 Other
650 _ 7 |a non-ionotropic signaling
|2 Other
650 _ 7 |a spine shrinkage
|2 Other
650 _ 7 |a synapse
|2 Other
650 _ 7 |a Receptors, N-Methyl-D-Aspartate
|2 NLM Chemicals
650 _ 7 |a Amyloid beta-Protein Precursor
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Receptors, N-Methyl-D-Aspartate: metabolism
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Amyloid beta-Protein Precursor: genetics
|2 MeSH
650 _ 2 |a Amyloid beta-Protein Precursor: metabolism
|2 MeSH
650 _ 2 |a Signal Transduction: physiology
|2 MeSH
650 _ 2 |a Long-Term Synaptic Depression: physiology
|2 MeSH
650 _ 2 |a Long-Term Synaptic Depression: drug effects
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Mice, Knockout
|2 MeSH
650 _ 2 |a Fear: physiology
|2 MeSH
650 _ 2 |a Hippocampus: metabolism
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Dendritic Spines: metabolism
|2 MeSH
650 _ 2 |a Memory: physiology
|2 MeSH
650 _ 2 |a Rats
|2 MeSH
700 1 _ |a Moreno, Sebastien
|b 1
700 1 _ |a Gandin, Carine
|b 2
700 1 _ |a Pousinha, Paula A
|b 3
700 1 _ |a Amici, Mascia
|b 4
700 1 _ |a Dupuis, Julien
|b 5
700 1 _ |a Anisimova, Margarita
|b 6
700 1 _ |a Winschel, Alex
|b 7
700 1 _ |a Uriot, Magalie
|b 8
700 1 _ |a Petshow, Samuel J
|b 9
700 1 _ |a Mensch, Maria
|b 10
700 1 _ |a Bethus, Ingrid
|b 11
700 1 _ |a Giudici, Camilla
|0 P:(DE-2719)2812582
|b 12
|u dzne
700 1 _ |a Hampel, Heike
|b 13
700 1 _ |a Wefers, Benedikt
|0 P:(DE-2719)2810988
|b 14
|u dzne
700 1 _ |a Wurst, Wolfgang
|0 P:(DE-2719)2000028
|b 15
|u dzne
700 1 _ |a Naumann, Ronald
|b 16
700 1 _ |a Ashby, Michael C
|b 17
700 1 _ |a Laube, Bodo
|b 18
700 1 _ |a Zito, Karen
|b 19
700 1 _ |a Mellor, Jack R
|b 20
700 1 _ |a Groc, Laurent
|b 21
700 1 _ |a Willem, Michael
|b 22
700 1 _ |a Marie, Hélène
|b 23
773 _ _ |a 10.1016/j.neuron.2024.05.027
|g Vol. 112, no. 16, p. 2708 - 2720.e9
|0 PERI:(DE-600)2001944-0
|n 16
|p 2708 - 2720.e9
|t Neuron
|v 112
|y 2024
|x 0896-6273
856 4 _ |u https://pub.dzne.de/record/271713/files/DZNE-2024-01065%20SUP.zip
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/271713/files/DZNE-2024-01065.pdf
856 4 _ |u https://pub.dzne.de/record/271713/files/DZNE-2024-01065.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:271713
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 12
|6 P:(DE-2719)2812582
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 14
|6 P:(DE-2719)2810988
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 15
|6 P:(DE-2719)2000028
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-28
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NEURON : 2022
|d 2023-08-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURON : 2022
|d 2023-08-28
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-28
920 1 _ |0 I:(DE-2719)1110007
|k AG Haass
|l Molecular Neurodegeneration
|x 0
920 1 _ |0 I:(DE-2719)1140001
|k AG Wurst
|l Genome Engineering
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1110007
980 _ _ |a I:(DE-2719)1140001
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21