Home > Publications Database > APP fragment controls both ionotropic and non-ionotropic signaling of NMDA receptors. > print |
001 | 271713 | ||
005 | 20250127091733.0 | ||
024 | 7 | _ | |a 10.1016/j.neuron.2024.05.027 |2 doi |
024 | 7 | _ | |a pmid:38878768 |2 pmid |
024 | 7 | _ | |a pmc:PMC11343662 |2 pmc |
024 | 7 | _ | |a 0896-6273 |2 ISSN |
024 | 7 | _ | |a 1097-4199 |2 ISSN |
024 | 7 | _ | |a altmetric:164550770 |2 altmetric |
037 | _ | _ | |a DZNE-2024-01065 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Dunot, Jade |b 0 |
245 | _ | _ | |a APP fragment controls both ionotropic and non-ionotropic signaling of NMDA receptors. |
260 | _ | _ | |a New York, NY |c 2024 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1725441246_24435 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a NMDA receptors (NMDARs) are ionotropic receptors crucial for brain information processing. Yet, evidence also supports an ion-flux-independent signaling mode mediating synaptic long-term depression (LTD) and spine shrinkage. Here, we identify AETA (Aη), an amyloid-β precursor protein (APP) cleavage product, as an NMDAR modulator with the unique dual regulatory capacity to impact both signaling modes. AETA inhibits ionotropic NMDAR activity by competing with the co-agonist and induces an intracellular conformational modification of GluN1 subunits. This favors non-ionotropic NMDAR signaling leading to enhanced LTD and favors spine shrinkage. Endogenously, AETA production is increased by in vivo chemogenetically induced neuronal activity. Genetic deletion of AETA production alters NMDAR transmission and prevents LTD, phenotypes rescued by acute exogenous AETA application. This genetic deletion also impairs contextual fear memory. Our findings demonstrate AETA-dependent NMDAR activation (ADNA), characterizing AETA as a unique type of endogenous NMDAR modulator that exerts bidirectional control over NMDAR signaling and associated information processing. |
536 | _ | _ | |a 352 - Disease Mechanisms (POF4-352) |0 G:(DE-HGF)POF4-352 |c POF4-352 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
650 | _ | 7 | |a APP |2 Other |
650 | _ | 7 | |a NMDA receptors |2 Other |
650 | _ | 7 | |a amyloid-β precursor protein |2 Other |
650 | _ | 7 | |a eta-secretase |2 Other |
650 | _ | 7 | |a hippocampus |2 Other |
650 | _ | 7 | |a long-term depression |2 Other |
650 | _ | 7 | |a memory |2 Other |
650 | _ | 7 | |a non-ionotropic signaling |2 Other |
650 | _ | 7 | |a spine shrinkage |2 Other |
650 | _ | 7 | |a synapse |2 Other |
650 | _ | 7 | |a Receptors, N-Methyl-D-Aspartate |2 NLM Chemicals |
650 | _ | 7 | |a Amyloid beta-Protein Precursor |2 NLM Chemicals |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Receptors, N-Methyl-D-Aspartate: metabolism |2 MeSH |
650 | _ | 2 | |a Animals |2 MeSH |
650 | _ | 2 | |a Mice |2 MeSH |
650 | _ | 2 | |a Amyloid beta-Protein Precursor: genetics |2 MeSH |
650 | _ | 2 | |a Amyloid beta-Protein Precursor: metabolism |2 MeSH |
650 | _ | 2 | |a Signal Transduction: physiology |2 MeSH |
650 | _ | 2 | |a Long-Term Synaptic Depression: physiology |2 MeSH |
650 | _ | 2 | |a Long-Term Synaptic Depression: drug effects |2 MeSH |
650 | _ | 2 | |a Mice, Inbred C57BL |2 MeSH |
650 | _ | 2 | |a Mice, Knockout |2 MeSH |
650 | _ | 2 | |a Fear: physiology |2 MeSH |
650 | _ | 2 | |a Hippocampus: metabolism |2 MeSH |
650 | _ | 2 | |a Neurons: metabolism |2 MeSH |
650 | _ | 2 | |a Dendritic Spines: metabolism |2 MeSH |
650 | _ | 2 | |a Memory: physiology |2 MeSH |
650 | _ | 2 | |a Rats |2 MeSH |
700 | 1 | _ | |a Moreno, Sebastien |b 1 |
700 | 1 | _ | |a Gandin, Carine |b 2 |
700 | 1 | _ | |a Pousinha, Paula A |b 3 |
700 | 1 | _ | |a Amici, Mascia |b 4 |
700 | 1 | _ | |a Dupuis, Julien |b 5 |
700 | 1 | _ | |a Anisimova, Margarita |b 6 |
700 | 1 | _ | |a Winschel, Alex |b 7 |
700 | 1 | _ | |a Uriot, Magalie |b 8 |
700 | 1 | _ | |a Petshow, Samuel J |b 9 |
700 | 1 | _ | |a Mensch, Maria |b 10 |
700 | 1 | _ | |a Bethus, Ingrid |b 11 |
700 | 1 | _ | |a Giudici, Camilla |0 P:(DE-2719)2812582 |b 12 |u dzne |
700 | 1 | _ | |a Hampel, Heike |b 13 |
700 | 1 | _ | |a Wefers, Benedikt |0 P:(DE-2719)2810988 |b 14 |u dzne |
700 | 1 | _ | |a Wurst, Wolfgang |0 P:(DE-2719)2000028 |b 15 |u dzne |
700 | 1 | _ | |a Naumann, Ronald |b 16 |
700 | 1 | _ | |a Ashby, Michael C |b 17 |
700 | 1 | _ | |a Laube, Bodo |b 18 |
700 | 1 | _ | |a Zito, Karen |b 19 |
700 | 1 | _ | |a Mellor, Jack R |b 20 |
700 | 1 | _ | |a Groc, Laurent |b 21 |
700 | 1 | _ | |a Willem, Michael |b 22 |
700 | 1 | _ | |a Marie, Hélène |b 23 |
773 | _ | _ | |a 10.1016/j.neuron.2024.05.027 |g Vol. 112, no. 16, p. 2708 - 2720.e9 |0 PERI:(DE-600)2001944-0 |n 16 |p 2708 - 2720.e9 |t Neuron |v 112 |y 2024 |x 0896-6273 |
856 | 4 | _ | |u https://pub.dzne.de/record/271713/files/DZNE-2024-01065%20SUP.zip |
856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/271713/files/DZNE-2024-01065.pdf |
856 | 4 | _ | |u https://pub.dzne.de/record/271713/files/DZNE-2024-01065.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:pub.dzne.de:271713 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 12 |6 P:(DE-2719)2812582 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 14 |6 P:(DE-2719)2810988 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 15 |6 P:(DE-2719)2000028 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-352 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Mechanisms |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-28 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NEURON : 2022 |d 2023-08-28 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEURON : 2022 |d 2023-08-28 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0 |0 LIC:(DE-HGF)CCBYNC4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-28 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-28 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-08-28 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-28 |
920 | 1 | _ | |0 I:(DE-2719)1110007 |k AG Haass |l Molecular Neurodegeneration |x 0 |
920 | 1 | _ | |0 I:(DE-2719)1140001 |k AG Wurst |l Genome Engineering |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-2719)1110007 |
980 | _ | _ | |a I:(DE-2719)1140001 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|