000271882 001__ 271882
000271882 005__ 20250127091554.0
000271882 0247_ $$2pmc$$apmc:PMC11364250
000271882 0247_ $$2doi$$a10.1371/journal.pone.0309415
000271882 0247_ $$2pmid$$apmid:39213296
000271882 0247_ $$2altmetric$$aaltmetric:166819815
000271882 037__ $$aDZNE-2024-01094
000271882 041__ $$aEnglish
000271882 082__ $$a610
000271882 1001_ $$aArner, Anja$$b0
000271882 245__ $$aIn vivo monitoring of leukemia-niche interactions in a zebrafish xenograft model.
000271882 260__ $$aSan Francisco, California, US$$bPLOS$$c2024
000271882 3367_ $$2DRIVER$$aarticle
000271882 3367_ $$2DataCite$$aOutput Types/Journal article
000271882 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1725279103_24698
000271882 3367_ $$2BibTeX$$aARTICLE
000271882 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000271882 3367_ $$00$$2EndNote$$aJournal Article
000271882 520__ $$aAcute lymphoblastic leukemia (ALL) is the most common type of malignancy in children. ALL prognosis after initial diagnosis is generally good; however, patients suffering from relapse have a poor outcome. The tumor microenvironment is recognized as an important contributor to relapse, yet the cell-cell interactions involved are complex and difficult to study in traditional experimental models. In the present study, we established an innovative larval zebrafish xenotransplantation model, that allows the analysis of leukemic cells (LCs) within an orthotopic niche using time-lapse microscopic and flow cytometric approaches. LCs homed, engrafted and proliferated within the hematopoietic niche at the time of transplant, the caudal hematopoietic tissue (CHT). A specific dissemination pattern of LCs within the CHT was recorded, as they extravasated over time and formed clusters close to the dorsal aorta. Interactions of LCs with macrophages and endothelial cells could be quantitatively characterized. This zebrafish model will allow the quantitative analysis of LCs in a functional and complex microenvironment, to study mechanisms of niche mediated leukemogenesis, leukemia maintenance and relapse development.
000271882 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000271882 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000271882 650_2 $$2MeSH$$aAnimals
000271882 650_2 $$2MeSH$$aZebrafish
000271882 650_2 $$2MeSH$$aTumor Microenvironment
000271882 650_2 $$2MeSH$$aPrecursor Cell Lymphoblastic Leukemia-Lymphoma: pathology
000271882 650_2 $$2MeSH$$aHumans
000271882 650_2 $$2MeSH$$aDisease Models, Animal
000271882 650_2 $$2MeSH$$aCell Communication
000271882 650_2 $$2MeSH$$aHeterografts
000271882 650_2 $$2MeSH$$aStem Cell Niche
000271882 650_2 $$2MeSH$$aCell Line, Tumor
000271882 650_2 $$2MeSH$$aEndothelial Cells: pathology
000271882 650_2 $$2MeSH$$aMacrophages: pathology
000271882 650_2 $$2MeSH$$aMacrophages: metabolism
000271882 650_2 $$2MeSH$$aTransplantation, Heterologous
000271882 7001_ $$aEttinger, Andreas$$b1
000271882 7001_ $$aBlaser, Bradley Wayne$$b2
000271882 7001_ $$0P:(DE-2719)2241638$$aSchmid, Bettina$$b3$$udzne
000271882 7001_ $$aJeremias, Irmela$$b4
000271882 7001_ $$aRostam, Nadia$$b5
000271882 7001_ $$00009-0004-1798-8788$$aBinder-Blaser, Vera$$b6
000271882 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0309415$$gVol. 19, no. 8, p. e0309415 -$$n8$$pe0309415$$tPLOS ONE$$v19$$x1932-6203$$y2024
000271882 8564_ $$uhttps://pub.dzne.de/record/271882/files/DZNE-2024-01094.pdf$$yOpenAccess
000271882 8564_ $$uhttps://pub.dzne.de/record/271882/files/DZNE-2024-01094.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000271882 909CO $$ooai:pub.dzne.de:271882$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000271882 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2241638$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000271882 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000271882 9141_ $$y2024
000271882 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
000271882 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
000271882 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-25
000271882 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-25
000271882 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-25
000271882 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-10-25
000271882 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-04-12T10:14:32Z
000271882 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-04-12T10:14:32Z
000271882 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
000271882 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-25
000271882 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
000271882 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000271882 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000271882 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-25
000271882 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-25
000271882 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
000271882 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-25
000271882 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
000271882 9201_ $$0I:(DE-2719)1140002$$kAG Schmid München$$lGenetic Models of Neurodegeneration$$x0
000271882 980__ $$ajournal
000271882 980__ $$aVDB
000271882 980__ $$aUNRESTRICTED
000271882 980__ $$aI:(DE-2719)1140002
000271882 9801_ $$aFullTexts