000271972 001__ 271972
000271972 005__ 20250202000614.0
000271972 0247_ $$2pmc$$apmc:PMC11418716
000271972 0247_ $$2doi$$a10.1177/0271678X241254718
000271972 0247_ $$2pmid$$apmid:39234984
000271972 0247_ $$2ISSN$$a0271-678X
000271972 0247_ $$2ISSN$$a1559-7016
000271972 0247_ $$2altmetric$$aaltmetric:169241653
000271972 037__ $$aDZNE-2024-01114
000271972 041__ $$aEnglish
000271972 082__ $$a610
000271972 1001_ $$00000-0001-6686-1880$$aSkrobot, Matej$$b0
000271972 245__ $$aRefined movement analysis in the staircase test reveals differential motor deficits in mouse models of stroke.
000271972 260__ $$aLondon$$bSage$$c2024
000271972 3367_ $$2DRIVER$$aarticle
000271972 3367_ $$2DataCite$$aOutput Types/Journal article
000271972 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1727079494_25599
000271972 3367_ $$2BibTeX$$aARTICLE
000271972 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000271972 3367_ $$00$$2EndNote$$aJournal Article
000271972 520__ $$aAccurate assessment of post-stroke deficits is crucial in translational research. Recent advances in machine learning offer precise quantification of rodent motor behavior post-stroke, yet detecting lesion-specific upper extremity deficits remains unclear. Employing proximal middle cerebral artery occlusion (MCAO) and cortical photothrombosis (PT) in mice, we assessed post-stroke impairments via the Staircase test. Lesion locations were identified using 7 T-MRI. Machine learning was applied to reconstruct forepaw kinematic trajectories and feature analysis was achieved with MouseReach, a new data-processing toolbox. Lesion reconstructions pinpointed ischemic centers in the striatum (MCAO) and sensorimotor cortex (PT). Pellet retrieval alterations were observed, but were unrelated to overall stroke volume. Instead, forepaw slips and relative reaching success correlated with increasing cortical lesion size in both models. Striatal lesion size after MCAO was associated with prolonged reach durations that occurred with delayed symptom onset. Further analysis on the impact of selective serotonin reuptake inhibitors in the PT model revealed no clear treatment effects but replicated strong effect sizes of slips for post-stroke deficit detection. In summary, refined movement analysis unveiled specific deficits in two widely-used mouse stroke models, emphasizing the value of deep behavioral profiling in preclinical stroke research to enhance model validity for clinical translation.
000271972 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000271972 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000271972 650_7 $$2Other$$aMachine learning
000271972 650_7 $$2Other$$amotor deficits
000271972 650_7 $$2Other$$arodent models
000271972 650_7 $$2Other$$astroke
000271972 650_7 $$2Other$$atranslational research
000271972 650_2 $$2MeSH$$aAnimals
000271972 650_2 $$2MeSH$$aMice
000271972 650_2 $$2MeSH$$aDisease Models, Animal
000271972 650_2 $$2MeSH$$aMale
000271972 650_2 $$2MeSH$$aInfarction, Middle Cerebral Artery: diagnostic imaging
000271972 650_2 $$2MeSH$$aInfarction, Middle Cerebral Artery: physiopathology
000271972 650_2 $$2MeSH$$aInfarction, Middle Cerebral Artery: complications
000271972 650_2 $$2MeSH$$aStroke: physiopathology
000271972 650_2 $$2MeSH$$aStroke: diagnostic imaging
000271972 650_2 $$2MeSH$$aStroke: complications
000271972 650_2 $$2MeSH$$aMice, Inbred C57BL
000271972 650_2 $$2MeSH$$aMagnetic Resonance Imaging: methods
000271972 650_2 $$2MeSH$$aMachine Learning
000271972 650_2 $$2MeSH$$aMovement: physiology
000271972 7001_ $$aSa, Rafael De$$b1
000271972 7001_ $$aWalter, Josefine$$b2
000271972 7001_ $$00000-0003-0925-0308$$aVogt, Arend$$b3
000271972 7001_ $$aPaulat, Raik$$b4
000271972 7001_ $$aLips, Janet$$b5
000271972 7001_ $$aMosch, Larissa$$b6
000271972 7001_ $$00000-0001-8777-4823$$aMueller, Susanne$$b7
000271972 7001_ $$aDominiak, Sina$$b8
000271972 7001_ $$aSachdev, Robert$$b9
000271972 7001_ $$aBoehm-Sturm, Philipp$$b10
000271972 7001_ $$0P:(DE-2719)2810838$$aDirnagl, Ulrich$$b11$$udzne
000271972 7001_ $$0P:(DE-2719)2811033$$aEndres, Matthias$$b12$$udzne
000271972 7001_ $$00000-0002-2063-2860$$aHarms, Christoph$$b13
000271972 7001_ $$aWenger, Nikolaus$$b14
000271972 773__ $$0PERI:(DE-600)2039456-1$$a10.1177/0271678X241254718$$gVol. 44, no. 9, p. 0271678X241254718$$n9$$p1551 - 1564$$tJournal of cerebral blood flow & metabolism$$v44$$x0271-678X$$y2024
000271972 8564_ $$uhttps://pub.dzne.de/record/271972/files/DZNE-2024-01114%20SUP1.mp4
000271972 8564_ $$uhttps://pub.dzne.de/record/271972/files/DZNE-2024-01114%20SUP2.pdf
000271972 8564_ $$uhttps://pub.dzne.de/record/271972/files/DZNE-2024-01114%20SUP2.pdf?subformat=pdfa$$xpdfa
000271972 8564_ $$uhttps://pub.dzne.de/record/271972/files/DZNE-2024-01114.pdf$$yOpenAccess
000271972 8564_ $$uhttps://pub.dzne.de/record/271972/files/DZNE-2024-01114.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000271972 909CO $$ooai:pub.dzne.de:271972$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000271972 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810838$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b11$$kDZNE
000271972 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811033$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b12$$kDZNE
000271972 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000271972 9141_ $$y2024
000271972 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-19
000271972 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-19
000271972 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-19
000271972 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-19
000271972 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-19
000271972 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CEREBR BLOOD F MET : 2022$$d2023-08-19
000271972 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-19
000271972 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-19
000271972 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-19
000271972 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000271972 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000271972 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-19
000271972 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CEREBR BLOOD F MET : 2022$$d2023-08-19
000271972 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-19$$wger
000271972 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-19
000271972 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-19
000271972 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-19
000271972 9201_ $$0I:(DE-2719)1810002$$kAG Dirnagl$$lVascular Pathology$$x0
000271972 9201_ $$0I:(DE-2719)1811005$$kAG Endres$$lInterdisciplinary Dementia Research$$x1
000271972 980__ $$ajournal
000271972 980__ $$aVDB
000271972 980__ $$aUNRESTRICTED
000271972 980__ $$aI:(DE-2719)1810002
000271972 980__ $$aI:(DE-2719)1811005
000271972 9801_ $$aFullTexts