001     271972
005     20250202000614.0
024 7 _ |a pmc:PMC11418716
|2 pmc
024 7 _ |a 10.1177/0271678X241254718
|2 doi
024 7 _ |a pmid:39234984
|2 pmid
024 7 _ |a 0271-678X
|2 ISSN
024 7 _ |a 1559-7016
|2 ISSN
024 7 _ |a altmetric:169241653
|2 altmetric
037 _ _ |a DZNE-2024-01114
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Skrobot, Matej
|0 0000-0001-6686-1880
|b 0
245 _ _ |a Refined movement analysis in the staircase test reveals differential motor deficits in mouse models of stroke.
260 _ _ |a London
|c 2024
|b Sage
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1727079494_25599
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Accurate assessment of post-stroke deficits is crucial in translational research. Recent advances in machine learning offer precise quantification of rodent motor behavior post-stroke, yet detecting lesion-specific upper extremity deficits remains unclear. Employing proximal middle cerebral artery occlusion (MCAO) and cortical photothrombosis (PT) in mice, we assessed post-stroke impairments via the Staircase test. Lesion locations were identified using 7 T-MRI. Machine learning was applied to reconstruct forepaw kinematic trajectories and feature analysis was achieved with MouseReach, a new data-processing toolbox. Lesion reconstructions pinpointed ischemic centers in the striatum (MCAO) and sensorimotor cortex (PT). Pellet retrieval alterations were observed, but were unrelated to overall stroke volume. Instead, forepaw slips and relative reaching success correlated with increasing cortical lesion size in both models. Striatal lesion size after MCAO was associated with prolonged reach durations that occurred with delayed symptom onset. Further analysis on the impact of selective serotonin reuptake inhibitors in the PT model revealed no clear treatment effects but replicated strong effect sizes of slips for post-stroke deficit detection. In summary, refined movement analysis unveiled specific deficits in two widely-used mouse stroke models, emphasizing the value of deep behavioral profiling in preclinical stroke research to enhance model validity for clinical translation.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Machine learning
|2 Other
650 _ 7 |a motor deficits
|2 Other
650 _ 7 |a rodent models
|2 Other
650 _ 7 |a stroke
|2 Other
650 _ 7 |a translational research
|2 Other
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Infarction, Middle Cerebral Artery: diagnostic imaging
|2 MeSH
650 _ 2 |a Infarction, Middle Cerebral Artery: physiopathology
|2 MeSH
650 _ 2 |a Infarction, Middle Cerebral Artery: complications
|2 MeSH
650 _ 2 |a Stroke: physiopathology
|2 MeSH
650 _ 2 |a Stroke: diagnostic imaging
|2 MeSH
650 _ 2 |a Stroke: complications
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
650 _ 2 |a Machine Learning
|2 MeSH
650 _ 2 |a Movement: physiology
|2 MeSH
700 1 _ |a Sa, Rafael De
|b 1
700 1 _ |a Walter, Josefine
|b 2
700 1 _ |a Vogt, Arend
|0 0000-0003-0925-0308
|b 3
700 1 _ |a Paulat, Raik
|b 4
700 1 _ |a Lips, Janet
|b 5
700 1 _ |a Mosch, Larissa
|b 6
700 1 _ |a Mueller, Susanne
|0 0000-0001-8777-4823
|b 7
700 1 _ |a Dominiak, Sina
|b 8
700 1 _ |a Sachdev, Robert
|b 9
700 1 _ |a Boehm-Sturm, Philipp
|b 10
700 1 _ |a Dirnagl, Ulrich
|0 P:(DE-2719)2810838
|b 11
|u dzne
700 1 _ |a Endres, Matthias
|0 P:(DE-2719)2811033
|b 12
|u dzne
700 1 _ |a Harms, Christoph
|0 0000-0002-2063-2860
|b 13
700 1 _ |a Wenger, Nikolaus
|b 14
773 _ _ |a 10.1177/0271678X241254718
|g Vol. 44, no. 9, p. 0271678X241254718
|0 PERI:(DE-600)2039456-1
|n 9
|p 1551 - 1564
|t Journal of cerebral blood flow & metabolism
|v 44
|y 2024
|x 0271-678X
856 4 _ |u https://pub.dzne.de/record/271972/files/DZNE-2024-01114%20SUP1.mp4
856 4 _ |u https://pub.dzne.de/record/271972/files/DZNE-2024-01114%20SUP2.pdf
856 4 _ |x pdfa
|u https://pub.dzne.de/record/271972/files/DZNE-2024-01114%20SUP2.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/271972/files/DZNE-2024-01114.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/271972/files/DZNE-2024-01114.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:271972
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)2810838
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 12
|6 P:(DE-2719)2811033
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CEREBR BLOOD F MET : 2022
|d 2023-08-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-19
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-19
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J CEREBR BLOOD F MET : 2022
|d 2023-08-19
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-08-19
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-19
920 1 _ |0 I:(DE-2719)1810002
|k AG Dirnagl
|l Vascular Pathology
|x 0
920 1 _ |0 I:(DE-2719)1811005
|k AG Endres
|l Interdisciplinary Dementia Research
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1810002
980 _ _ |a I:(DE-2719)1811005
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21