000271987 001__ 271987
000271987 005__ 20250127091542.0
000271987 0247_ $$2pmc$$apmc:PMC11380690
000271987 0247_ $$2doi$$a10.1038/s41467-024-51868-8
000271987 0247_ $$2pmid$$apmid:39244616
000271987 0247_ $$2altmetric$$aaltmetric:167136727
000271987 037__ $$aDZNE-2024-01121
000271987 041__ $$aEnglish
000271987 082__ $$a500
000271987 1001_ $$0P:(DE-2719)9001582$$aHasegawa, Masashi$$b0$$eFirst author
000271987 245__ $$aNetwork state changes in sensory thalamus represent learned outcomes.
000271987 260__ $$a[London]$$bNature Publishing Group UK$$c2024
000271987 3367_ $$2DRIVER$$aarticle
000271987 3367_ $$2DataCite$$aOutput Types/Journal article
000271987 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1728553725_12712
000271987 3367_ $$2BibTeX$$aARTICLE
000271987 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000271987 3367_ $$00$$2EndNote$$aJournal Article
000271987 520__ $$aThalamic brain areas play an important role in adaptive behaviors. Nevertheless, the population dynamics of thalamic relays during learning across sensory modalities remain unknown. Using a cross-modal sensory reward-associative learning paradigm combined with deep brain two-photon calcium imaging of large populations of auditory thalamus (medial geniculate body, MGB) neurons in male mice, we identified that MGB neurons are biased towards reward predictors independent of modality. Additionally, functional classes of MGB neurons aligned with distinct task periods and behavioral outcomes, both dependent and independent of sensory modality. During non-sensory delay periods, MGB ensembles developed coherent neuronal representation as well as distinct co-activity network states reflecting predicted task outcome. These results demonstrate flexible cross-modal ensemble coding in auditory thalamus during adaptive learning and highlight its importance in brain-wide cross-modal computations during complex behavior.
000271987 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000271987 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000271987 650_2 $$2MeSH$$aAnimals
000271987 650_2 $$2MeSH$$aMale
000271987 650_2 $$2MeSH$$aMice
000271987 650_2 $$2MeSH$$aGeniculate Bodies: physiology
000271987 650_2 $$2MeSH$$aThalamus: physiology
000271987 650_2 $$2MeSH$$aReward
000271987 650_2 $$2MeSH$$aNeurons: physiology
000271987 650_2 $$2MeSH$$aLearning: physiology
000271987 650_2 $$2MeSH$$aMice, Inbred C57BL
000271987 7001_ $$0P:(DE-2719)9001374$$aHuang, Ziyan$$b1
000271987 7001_ $$0P:(DE-2719)9002046$$aParicio-Montesinos, Ricardo$$b2
000271987 7001_ $$0P:(DE-2719)9001219$$aGründemann, Jan$$b3$$eLast author
000271987 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-024-51868-8$$gVol. 15, no. 1, p. 7830$$n1$$p7830$$tNature Communications$$v15$$x2041-1723$$y2024
000271987 7870_ $$0DZNE-2023-00847$$aHasegawa, Masashi et.al.$$dCold Spring Harbor : Cold Spring Harbor Laboratory, NY, 2023$$iIsParent$$r$$tNetwork state changes in sensory thalamus represent learned outcomes
000271987 8564_ $$uhttps://pub.dzne.de/record/271987/files/DZNE-2024-01121%20SUP%2BSRC.zip
000271987 8564_ $$uhttps://pub.dzne.de/record/271987/files/DZNE-2024-01121.pdf$$yOpenAccess
000271987 8564_ $$uhttps://pub.dzne.de/record/271987/files/DZNE-2024-01121.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000271987 909CO $$ooai:pub.dzne.de:271987$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000271987 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001582$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000271987 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001374$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000271987 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9002046$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000271987 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001219$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000271987 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000271987 9141_ $$y2024
000271987 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000271987 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000271987 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2023-08-29
000271987 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
000271987 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
000271987 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-29
000271987 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:09:09Z
000271987 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:09:09Z
000271987 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2023-05-02T09:09:09Z
000271987 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2023-05-02T09:09:09Z
000271987 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
000271987 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-29
000271987 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
000271987 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
000271987 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-29
000271987 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-29
000271987 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-08-29
000271987 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-08-29
000271987 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
000271987 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-29
000271987 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2023-08-29
000271987 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29
000271987 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29
000271987 9201_ $$0I:(DE-2719)5000069$$kAG Gründemann$$lNeural Circuit Computations$$x0
000271987 980__ $$ajournal
000271987 980__ $$aVDB
000271987 980__ $$aI:(DE-2719)5000069
000271987 980__ $$aUNRESTRICTED
000271987 9801_ $$aFullTexts