001     272155
005     20250127091531.0
024 7 _ |a pmc:PMC11407764
|2 pmc
024 7 _ |a 10.7554/eLife.98834
|2 doi
024 7 _ |a pmid:39287515
|2 pmid
024 7 _ |a altmetric:167944511
|2 altmetric
037 _ _ |a DZNE-2024-01146
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Passlick, Stefan
|0 0000-0002-7703-7018
|b 0
245 _ _ |a Bidirectional dysregulation of synaptic glutamate signaling after transient metabolic failure.
260 _ _ |a Cambridge
|c 2024
|b eLife Sciences Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1727165422_25599
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ischemia leads to a severe dysregulation of glutamate homeostasis and excitotoxic cell damage in the brain. Shorter episodes of energy depletion, for instance during peri-infarct depolarizations, can also acutely perturb glutamate signaling. It is less clear if such episodes of metabolic failure also have persistent effects on glutamate signaling and how the relevant mechanisms such as glutamate release and uptake are differentially affected. We modeled acute and transient metabolic failure by using a chemical ischemia protocol and analyzed its effect on glutamatergic synaptic transmission and extracellular glutamate signals by electrophysiology and multiphoton imaging, respectively, in the mouse hippocampus. Our experiments uncover a duration-dependent bidirectional dysregulation of glutamate signaling. Whereas short chemical ischemia induces a lasting potentiation of presynaptic glutamate release and synaptic transmission, longer episodes result in a persistent postsynaptic failure of synaptic transmission. We also observed unexpected differences in the vulnerability of the investigated cellular mechanisms. Axonal action potential firing and glutamate uptake were surprisingly resilient compared to postsynaptic cells, which overall were most vulnerable to acute and transient metabolic stress. We conclude that short perturbations of energy supply lead to a lasting potentiation of synaptic glutamate release, which may increase glutamate excitotoxicity well beyond the metabolic incident.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a glutamate release
|2 Other
650 _ 7 |a glutamate uptake
|2 Other
650 _ 7 |a ischemia
|2 Other
650 _ 7 |a metabolic failure
|2 Other
650 _ 7 |a mouse
|2 Other
650 _ 7 |a neuroscience
|2 Other
650 _ 7 |a stroke
|2 Other
650 _ 7 |a synaptic transmission
|2 Other
650 _ 7 |a Glutamic Acid
|0 3KX376GY7L
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Glutamic Acid: metabolism
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Synaptic Transmission
|2 MeSH
650 _ 2 |a Hippocampus: metabolism
|2 MeSH
650 _ 2 |a Signal Transduction
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Synapses: metabolism
|2 MeSH
650 _ 2 |a Synapses: physiology
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
700 1 _ |a Ullah, Ghanim
|b 1
700 1 _ |a Henneberger, Christian
|0 P:(DE-2719)2811625
|b 2
|e Last author
773 _ _ |a 10.7554/eLife.98834
|g Vol. 13, p. RP98834
|0 PERI:(DE-600)2687154-3
|p RP98834
|t eLife
|v 13
|y 2024
|x 2050-084X
856 4 _ |u https://pub.dzne.de/record/272155/files/DZNE-2024-01146%20SUP.pdf
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/272155/files/DZNE-2024-01146.pdf
856 4 _ |x pdfa
|u https://pub.dzne.de/record/272155/files/DZNE-2024-01146%20SUP.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/272155/files/DZNE-2024-01146.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:272155
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2811625
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELIFE : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-23T12:20:44Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-22
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELIFE : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
920 1 _ |0 I:(DE-2719)1013029
|k AG Henneberger
|l Synaptic and Glial Plasticity
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013029
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21