001     272348
005     20250127091519.0
024 7 _ |a pmc:PMC11423671
|2 pmc
024 7 _ |a 10.1080/15548627.2024.2358736
|2 doi
024 7 _ |a pmid:39316747
|2 pmid
024 7 _ |a 1554-8627
|2 ISSN
024 7 _ |a 1538-4101
|2 ISSN
024 7 _ |a 1551-4005
|2 ISSN
024 7 _ |a 1554-8635
|2 ISSN
024 7 _ |a altmetric:168394113
|2 altmetric
037 _ _ |a DZNE-2024-01165
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a de Calbiac, Hortense
|0 0000-0002-6246-0833
|b 0
245 _ _ |a Poly-GP accumulation due to C9orf72 loss of function induces motor neuron apoptosis through autophagy and mitophagy defects.
260 _ _ |a Abingdon, Oxon
|c 2024
|b Taylor & Francis
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1727775028_12005
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The GGGGCC hexanucleotide repeat expansion (HRE) of the C9orf72 gene is the most frequent cause of amyotrophic lateral sclerosis (ALS), a devastative neurodegenerative disease characterized by motor neuron degeneration. C9orf72 HRE is associated with lowered levels of C9orf72 expression and its translation results in the production of dipeptide-repeats (DPRs). To recapitulate C9orf72-related ALS disease in vivo, we developed a zebrafish model where we expressed glycine-proline (GP) DPR in a c9orf72 knockdown context. We report that C9orf72 gain- and loss-of-function properties act synergistically to induce motor neuron degeneration and paralysis with poly(GP) accumulating preferentially within motor neurons along with Sqstm1/p62 aggregation indicating macroautophagy/autophagy deficits. Poly(GP) levels were shown to accumulate upon c9orf72 downregulation and were comparable to levels assessed in autopsy samples of patients carrying C9orf72 HRE. Chemical boosting of autophagy using rapamycin or apilimod, is able to rescue motor deficits. Proteomics analysis of zebrafish-purified motor neurons unravels mitochondria dysfunction confirmed through a comparative analysis of previously published C9orf72 iPSC-derived motor neurons. Consistently, 3D-reconstructions of motor neuron demonstrate that poly(GP) aggregates colocalize to mitochondria, thus inducing their elongation and swelling and the failure of their processing by mitophagy, with mitophagy activation through urolithin A preventing locomotor deficits. Finally, we report apoptotic-related increased amounts of cleaved Casp3 (caspase 3, apoptosis-related cysteine peptidase) and rescue of motor neuron degeneration by constitutive inhibition of Casp9 or treatment with decylubiquinone. Here we provide evidence of key pathogenic steps in C9ALS-FTD that can be targeted through pharmacological avenues, thus raising new therapeutic perspectives for ALS patients.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Amyotrophic lateral sclerosis
|2 Other
650 _ 7 |a apoptosis
|2 Other
650 _ 7 |a mitochondria
|2 Other
650 _ 7 |a motor neuron
|2 Other
650 _ 7 |a neurodegeneration
|2 Other
650 _ 7 |a poly-GP
|2 Other
650 _ 7 |a C9orf72 Protein
|2 NLM Chemicals
650 _ 7 |a Dipeptides
|2 NLM Chemicals
650 _ 2 |a Motor Neurons: metabolism
|2 MeSH
650 _ 2 |a Motor Neurons: pathology
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a C9orf72 Protein: genetics
|2 MeSH
650 _ 2 |a C9orf72 Protein: metabolism
|2 MeSH
650 _ 2 |a Zebrafish
|2 MeSH
650 _ 2 |a Mitophagy: genetics
|2 MeSH
650 _ 2 |a Apoptosis: genetics
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Autophagy: genetics
|2 MeSH
650 _ 2 |a Autophagy: physiology
|2 MeSH
650 _ 2 |a Amyotrophic Lateral Sclerosis: metabolism
|2 MeSH
650 _ 2 |a Amyotrophic Lateral Sclerosis: pathology
|2 MeSH
650 _ 2 |a Amyotrophic Lateral Sclerosis: genetics
|2 MeSH
650 _ 2 |a Dipeptides: pharmacology
|2 MeSH
650 _ 2 |a Dipeptides: metabolism
|2 MeSH
650 _ 2 |a Loss of Function Mutation: genetics
|2 MeSH
650 _ 2 |a Mitochondria: metabolism
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
700 1 _ |a Renault, Solène
|b 1
700 1 _ |a Haouy, Grégoire
|b 2
700 1 _ |a Jung, Vincent
|b 3
700 1 _ |a Roger, Kevin
|b 4
700 1 _ |a Zhou, Qihui
|0 P:(DE-2719)2811347
|b 5
|u dzne
700 1 _ |a Campanari, Maria-Letizia
|b 6
700 1 _ |a Chentout, Loïc
|b 7
700 1 _ |a Demy, Doris Lou
|b 8
700 1 _ |a Marian, Anca
|b 9
700 1 _ |a Goudin, Nicolas
|b 10
700 1 _ |a Edbauer, Dieter
|0 P:(DE-2719)2231621
|b 11
|u dzne
700 1 _ |a Guerrera, Chiara
|b 12
700 1 _ |a Ciura, Sorana
|b 13
700 1 _ |a Kabashi, Edor
|b 14
773 _ _ |a 10.1080/15548627.2024.2358736
|g Vol. 20, no. 10, p. 2164 - 2185
|0 PERI:(DE-600)2262043-6
|n 10
|p 2164 - 2185
|t Autophagy
|v 20
|y 2024
|x 1554-8627
856 4 _ |u https://pub.dzne.de/record/272348/files/DZNE-2024-01165.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/272348/files/DZNE-2024-01165.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:272348
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2811347
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)2231621
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AUTOPHAGY : 2022
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b AUTOPHAGY : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
920 1 _ |0 I:(DE-2719)5000080
|k AG Zhou
|l Adaptive Immunity in Neurodegeneration
|x 0
920 1 _ |0 I:(DE-2719)1110004
|k AG Edbauer
|l Cell Biology of Neurodegeneration
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)5000080
980 _ _ |a I:(DE-2719)1110004
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21