001     272349
005     20250127091514.0
024 7 _ |a pmc:PMC11426968
|2 pmc
024 7 _ |a 10.7554/eLife.94916.3
|2 doi
024 7 _ |a 10.7554/eLife.94916
|2 doi
024 7 _ |a altmetric:169069659
|2 altmetric
024 7 _ |a pmid:39325034
|2 pmid
037 _ _ |a DZNE-2024-01166
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Monzel, Merlin
|0 P:(DE-2719)9001576
|b 0
|e First author
245 _ _ |a Hippocampal-occipital connectivity reflects autobiographical memory deficits in aphantasia
260 _ _ |a Cambridge
|c 2024
|b eLife Sciences Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1727774768_10857
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Aphantasia refers to reduced or absent visual imagery. While most of us can readily recall decade-old personal experiences (autobiographical memories, AM) with vivid mental images, there is a dearth of information about whether the loss of visual imagery in aphantasics affects their AM retrieval. The hippocampus is thought to be a crucial hub in a brain-wide network underlying AM. One important question is whether this network, especially the connectivity of the hippocampus, is altered in aphantasia. In the current study, we tested 14 congenital aphantasics and 16 demographically matched controls in an AM fMRI task to investigate how key brain regions (i.e. hippocampus and visual-perceptual cortices) interact with each other during AM re-experiencing. All participants were interviewed regarding their autobiographical memory to examine their episodic and semantic recall of specific events. Aphantasics reported more difficulties in recalling AM, were less confident about their memories, and described less internal and emotional details than controls. Neurally, aphantasics displayed decreased hippocampal and increased visual-perceptual cortex activation during AM retrieval compared to controls. In addition, controls showed strong negative functional connectivity between the hippocampus and the visual cortex during AM and resting-state functional connectivity between these two brain structures predicted better visualization skills. Our results indicate that visual mental imagery plays an important role in detail-rich vivid AM, and that this type of cognitive function is supported by the functional connection between the hippocampus and the visual-perceptual cortex.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 1
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: pub.dzne.de
650 _ 7 |a aphantasia
|2 Other
650 _ 7 |a autobiographical retrieval
|2 Other
650 _ 7 |a episodic memory
|2 Other
650 _ 7 |a functional connectivity
|2 Other
650 _ 7 |a human
|2 Other
650 _ 7 |a neural networks
|2 Other
650 _ 7 |a neuroscience
|2 Other
650 _ 7 |a visual cortex
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Hippocampus: physiopathology
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Memory, Episodic
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Mental Recall: physiology
|2 MeSH
650 _ 2 |a Memory Disorders: physiopathology
|2 MeSH
650 _ 2 |a Occipital Lobe: physiopathology
|2 MeSH
650 _ 2 |a Occipital Lobe: diagnostic imaging
|2 MeSH
650 _ 2 |a Young Adult
|2 MeSH
700 1 _ |a Leelaarporn, Pitshaporn
|0 P:(DE-2719)2812276
|b 1
|e First author
700 1 _ |a Lutz, Teresa
|0 P:(DE-2719)9002173
|b 2
700 1 _ |a Schultz, Johannes
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Brunheim, Sascha
|0 P:(DE-2719)2812752
|b 4
700 1 _ |a Reuter, Martin
|0 P:(DE-2719)2812134
|b 5
700 1 _ |a McCormick, Cornelia
|0 P:(DE-2719)9000865
|b 6
|e Last author
773 _ _ |a 10.7554/eLife.94916
|g Vol. 13, p. RP94916
|0 PERI:(DE-600)2687154-3
|p RP94916
|t eLife
|v 13
|y 2024
|x 2050-084X
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/272349/files/DZNE-2024-01166.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/272349/files/DZNE-2024-01166.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:272349
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001576
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2812276
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9002173
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2812752
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-2719)2812134
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)9000865
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 1
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 2
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELIFE : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-23T12:20:44Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-22
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELIFE : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
920 1 _ |0 I:(DE-2719)1011001
|k Clinical Research (Bonn)
|l Clinical Research Coordination
|x 0
920 1 _ |0 I:(DE-2719)1011103
|k AG Spottke
|l Clinical Research Platform (CRP)
|x 1
920 1 _ |0 I:(DE-2719)1013006
|k AG Remy
|l Neuronal Networks
|x 2
920 1 _ |0 I:(DE-2719)1013026
|k AG Stöcker
|l MR Physics
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1011001
980 _ _ |a I:(DE-2719)1011103
980 _ _ |a I:(DE-2719)1013006
980 _ _ |a I:(DE-2719)1013026
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21