000272488 001__ 272488
000272488 005__ 20241001164214.0
000272488 0247_ $$2doi$$a10.1016/j.celrep.2024.114736
000272488 0247_ $$2pmid$$apmid:39277863
000272488 0247_ $$2ISSN$$a2211-1247
000272488 0247_ $$2ISSN$$a2639-1856
000272488 0247_ $$2altmetric$$aaltmetric:168116958
000272488 037__ $$aDZNE-2024-01169
000272488 041__ $$aEnglish
000272488 082__ $$a610
000272488 1001_ $$0P:(DE-HGF)0$$aWang, Wei$$b0
000272488 245__ $$aButyrate and propionate are microbial danger signals that activate the NLRP3 inflammasome in human macrophages upon TLR stimulation.
000272488 260__ $$a[New York, NY]$$bElsevier$$c2024
000272488 3367_ $$2DRIVER$$aarticle
000272488 3367_ $$2DataCite$$aOutput Types/Journal article
000272488 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1727774462_3189
000272488 3367_ $$2BibTeX$$aARTICLE
000272488 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000272488 3367_ $$00$$2EndNote$$aJournal Article
000272488 520__ $$aShort-chain fatty acids (SCFAs) are immunomodulatory compounds produced by the microbiome through dietary fiber fermentation. Although generally considered beneficial for gut health, patients suffering from inflammatory bowel disease (IBD) display poor tolerance to fiber-rich diets, suggesting that SCFAs may have contrary effects under inflammatory conditions. To investigate this, we examined the effect of SCFAs on human macrophages in the presence of Toll-like receptor (TLR) agonists. In contrast to anti-inflammatory effects under steady-state conditions, we found that butyrate and propionate activated the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in the presence of TLR agonists. Mechanistically, these SCFAs prevented transcription of FLICE-like inhibitory protein (cFLIP) and interleukin-10 (IL-10) through histone deacetylase (HDAC) inhibition, triggering caspase-8-dependent NLRP3 inflammasome activation. SCFA-driven NLRP3 activation was potassium efflux independent and did not result in cell death but rather triggered hyperactivation and IL-1β release. Our findings demonstrate that butyrate and propionate are bacterially derived danger signals that regulate NLRP3 inflammasome activation through epigenetic modulation of the inflammatory response.
000272488 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000272488 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000272488 650_7 $$2Other$$aCP: Immunology
000272488 650_7 $$2Other$$aHDAC
000272488 650_7 $$2Other$$aIL-10
000272488 650_7 $$2Other$$aNLRP3
000272488 650_7 $$2Other$$aSCFA
000272488 650_7 $$2Other$$aacetylation
000272488 650_7 $$2Other$$abutyrate
000272488 650_7 $$2Other$$acFLIP
000272488 650_7 $$2Other$$acaspase-8
000272488 650_7 $$2Other$$ainflammasome
000272488 650_7 $$2Other$$apropionate
000272488 650_7 $$2NLM Chemicals$$aNLR Family, Pyrin Domain-Containing 3 Protein
000272488 650_7 $$2NLM Chemicals$$aInflammasomes
000272488 650_7 $$2NLM Chemicals$$aPropionates
000272488 650_7 $$2NLM Chemicals$$aButyrates
000272488 650_7 $$2NLM Chemicals$$aToll-Like Receptors
000272488 650_7 $$2NLM Chemicals$$aNLRP3 protein, human
000272488 650_7 $$2NLM Chemicals$$aInterleukin-1beta
000272488 650_7 $$0130068-27-8$$2NLM Chemicals$$aInterleukin-10
000272488 650_2 $$2MeSH$$aHumans
000272488 650_2 $$2MeSH$$aNLR Family, Pyrin Domain-Containing 3 Protein: metabolism
000272488 650_2 $$2MeSH$$aInflammasomes: metabolism
000272488 650_2 $$2MeSH$$aPropionates: pharmacology
000272488 650_2 $$2MeSH$$aButyrates: pharmacology
000272488 650_2 $$2MeSH$$aMacrophages: metabolism
000272488 650_2 $$2MeSH$$aMacrophages: drug effects
000272488 650_2 $$2MeSH$$aToll-Like Receptors: metabolism
000272488 650_2 $$2MeSH$$aSignal Transduction: drug effects
000272488 650_2 $$2MeSH$$aInterleukin-1beta: metabolism
000272488 650_2 $$2MeSH$$aInterleukin-10: metabolism
000272488 7001_ $$aDernst, Alesja$$b1
000272488 7001_ $$aMartin, Bianca$$b2
000272488 7001_ $$aLorenzi, Lucia$$b3
000272488 7001_ $$aCadefau-Fabregat, Maria$$b4
000272488 7001_ $$aPhulphagar, Kshiti$$b5
000272488 7001_ $$aWagener, Antonia$$b6
000272488 7001_ $$aBudden, Christina$$b7
000272488 7001_ $$aStair, Neil$$b8
000272488 7001_ $$aWagner, Theresa$$b9
000272488 7001_ $$aFärber, Harald$$b10
000272488 7001_ $$aJaensch, Andreas$$b11
000272488 7001_ $$aStahl, Rainer$$b12
000272488 7001_ $$aDuthie, Fraser$$b13
000272488 7001_ $$aSchmidt, Susanne V$$b14
000272488 7001_ $$aColl, Rebecca C$$b15
000272488 7001_ $$aMeissner, Felix$$b16
000272488 7001_ $$aCuartero, Sergi$$b17
000272488 7001_ $$0P:(DE-2719)2000062$$aLatz, Eicke$$b18$$udzne
000272488 7001_ $$0P:(DE-2719)2810930$$aMangan, Matthew$$b19$$eLast author
000272488 773__ $$0PERI:(DE-600)2649101-1$$a10.1016/j.celrep.2024.114736$$gVol. 43, no. 9, p. 114736 -$$n9$$p114736$$tCell reports$$v43$$x2211-1247$$y2024
000272488 8564_ $$uhttps://pub.dzne.de/record/272488/files/DZNE-2024-01169.pdf$$yOpenAccess
000272488 8564_ $$uhttps://pub.dzne.de/record/272488/files/DZNE-2024-01169.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000272488 909CO $$ooai:pub.dzne.de:272488$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000272488 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000062$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b18$$kDZNE
000272488 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810930$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b19$$kDZNE
000272488 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000272488 9141_ $$y2024
000272488 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
000272488 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
000272488 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-26
000272488 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-26
000272488 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000272488 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL REP : 2022$$d2023-10-26
000272488 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:49:39Z
000272488 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:49:39Z
000272488 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
000272488 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-26
000272488 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
000272488 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000272488 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:49:39Z
000272488 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-26
000272488 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELL REP : 2022$$d2023-10-26
000272488 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
000272488 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
000272488 9201_ $$0I:(DE-2719)1013024$$kAG Latz$$lInnate Immunity in Neurodegeneration$$x0
000272488 980__ $$ajournal
000272488 980__ $$aVDB
000272488 980__ $$aI:(DE-2719)1013024
000272488 980__ $$aUNRESTRICTED
000272488 9801_ $$aFullTexts