000272502 001__ 272502
000272502 005__ 20241001164214.0
000272502 0247_ $$2doi$$a10.1088/1361-6668/ad7d3f
000272502 0247_ $$2ISSN$$a0953-2048
000272502 0247_ $$2ISSN$$a1361-6668
000272502 0247_ $$2altmetric$$aaltmetric:168826289
000272502 037__ $$aDZNE-2024-01178
000272502 082__ $$a530
000272502 1001_ $$00000-0002-4128-9440$$aLadd, Mark E$$b0
000272502 245__ $$aDesign requirements for human UHF magnets from the perspective of MRI scientists
000272502 260__ $$aBristol$$bIOP Publ.$$c2024
000272502 3367_ $$2DRIVER$$aarticle
000272502 3367_ $$2DataCite$$aOutput Types/Journal article
000272502 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1727771529_10857
000272502 3367_ $$2BibTeX$$aARTICLE
000272502 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000272502 3367_ $$00$$2EndNote$$aJournal Article
000272502 520__ $$aThe highest magnetic field strength for human-sized magnetic resonance imaging (MRI) currently lies at 11.7 tesla. Given the opportunities for enhanced sensitivity and improved data quality at higher static magnetic fields, several initiatives around the world are pursuing the implementation of further human MRI systems at or above 11.7 tesla. In general, members of the magnetic resonance (MR) research community are not experts on magnet technology. However, the magnet is the technological heart of any MR system, and the MRI community is challenging the magnet research and design community to fulfill the current engineering gap in implementing large-bore, highly homogeneous and stabile magnets at field strengths that go beyond the performance capability of niobium–titanium. In this article, we present an overview of magnet design for such systems from the perspective of MR scientists. The underlying motivation and need for higher magnetic fields are briefly introduced, and system design considerations for the magnet as well as for the MRI subsystems such as the gradients, the shimming arrangement, and the radiofrequency hardware are presented. Finally, important limitations to higher magnetic fields from physiological considerations are described, operating under the assumption that any engineering or economic barriers to realizing such systems will be overcome.
000272502 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000272502 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000272502 7001_ $$aQuick, Harald H$$b1
000272502 7001_ $$00000-0001-6316-8773$$aScheffler, Klaus$$b2
000272502 7001_ $$0P:(DE-2719)2810706$$aSpeck, Oliver$$b3$$eLast author
000272502 773__ $$0PERI:(DE-600)1361475-7$$a10.1088/1361-6668/ad7d3f$$gVol. 37, no. 11, p. 113001 -$$n11$$p113001$$tSuperconductor science and technology$$v37$$x0953-2048$$y2024
000272502 8564_ $$uhttps://pub.dzne.de/record/272502/files/DZNE-2024-01178.pdf$$yOpenAccess
000272502 8564_ $$uhttps://pub.dzne.de/record/272502/files/DZNE-2024-01178.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000272502 909CO $$ooai:pub.dzne.de:272502$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000272502 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810706$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000272502 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000272502 9141_ $$y2024
000272502 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
000272502 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
000272502 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000272502 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-23
000272502 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUPERCOND SCI TECH : 2022$$d2023-08-23
000272502 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
000272502 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
000272502 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-23
000272502 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000272502 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-23
000272502 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
000272502 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-23$$wger
000272502 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
000272502 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
000272502 9201_ $$0I:(DE-2719)1340009$$kAG Speck$$lLinking Imaging Projects$$x0
000272502 980__ $$ajournal
000272502 980__ $$aVDB
000272502 980__ $$aUNRESTRICTED
000272502 980__ $$aI:(DE-2719)1340009
000272502 9801_ $$aFullTexts