000272510 001__ 272510
000272510 005__ 20250127091513.0
000272510 0247_ $$2pmid$$apmid:39332748
000272510 0247_ $$2doi$$a10.1016/j.neuroimage.2024.120860
000272510 0247_ $$2ISSN$$a1053-8119
000272510 0247_ $$2ISSN$$a1095-9572
000272510 037__ $$aDZNE-2024-01186
000272510 041__ $$aEnglish
000272510 082__ $$a610
000272510 1001_ $$00009-0007-6158-319X$$aBartos, Laura M.$$b0
000272510 245__ $$aAstroglial glucose uptake determines brain FDG-PET alterations and metabolic connectivity during healthy aging in mice
000272510 260__ $$aOrlando, Fla.$$bAcademic Press$$c2024
000272510 3367_ $$2DRIVER$$aarticle
000272510 3367_ $$2DataCite$$aOutput Types/Journal article
000272510 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1729167842_2186
000272510 3367_ $$2BibTeX$$aARTICLE
000272510 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000272510 3367_ $$00$$2EndNote$$aJournal Article
000272510 520__ $$a 2-Fluorodeoxyglucose-PET (FDG-PET) is a powerful tool to study glucose metabolism in mammalian brains, but cellular sources of glucose uptake and metabolic connectivity during aging are not yet understood.Healthy wild-type mice of both sexes (2-21 months of age) received FDG-PET and cell sorting after in vivo tracer injection (scRadiotracing). FDG uptake per cell was quantified in isolated microglia, astrocytes and neurons. Cerebral FDG uptake and metabolic connectivity were determined by PET. A subset of mice received measurement of blood glucose levels to study associations with cellular FDG uptake during aging.Cerebral FDG-PET signals in healthy mice increased linearly with age. Cellular FDG uptake of neurons increased between 2 and 12 months of age, followed by a strong decrease towards late ages. Contrarily, FDG uptake in microglia and astrocytes exhibited a U-shaped function with respect to age, comprising the predominant cellular source of higher cerebral FDG uptake in the later stages. Metabolic connectivity was closely associated with the ratio of glucose uptake in astroglial cells relative to neurons. Cellular FDG uptake was not associated with blood glucose levels and increasing FDG brain uptake as a function of age was still observed after adjusting for blood glucose levels.Trajectories of astroglial glucose uptake drive brain FDG-PET alterations and metabolic connectivity during aging.
000272510 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000272510 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000272510 650_7 $$2Other$$aAging
000272510 650_7 $$2Other$$aAstroglia
000272510 650_7 $$2Other$$aFDG-PET
000272510 650_7 $$2Other$$aMetabolic connectivity
000272510 650_7 $$2Other$$aScradiotracing
000272510 650_7 $$00Z5B2CJX4D$$2NLM Chemicals$$aFluorodeoxyglucose F18
000272510 650_7 $$0IY9XDZ35W2$$2NLM Chemicals$$aGlucose
000272510 650_7 $$2NLM Chemicals$$aRadiopharmaceuticals
000272510 650_2 $$2MeSH$$aAnimals
000272510 650_2 $$2MeSH$$aFluorodeoxyglucose F18: pharmacokinetics
000272510 650_2 $$2MeSH$$aAstrocytes: metabolism
000272510 650_2 $$2MeSH$$aPositron-Emission Tomography: methods
000272510 650_2 $$2MeSH$$aMice
000272510 650_2 $$2MeSH$$aGlucose: metabolism
000272510 650_2 $$2MeSH$$aMale
000272510 650_2 $$2MeSH$$aBrain: metabolism
000272510 650_2 $$2MeSH$$aBrain: diagnostic imaging
000272510 650_2 $$2MeSH$$aFemale
000272510 650_2 $$2MeSH$$aMice, Inbred C57BL
000272510 650_2 $$2MeSH$$aAging: metabolism
000272510 650_2 $$2MeSH$$aRadiopharmaceuticals: pharmacokinetics
000272510 650_2 $$2MeSH$$aNeurons: metabolism
000272510 650_2 $$2MeSH$$aHealthy Aging: metabolism
000272510 650_2 $$2MeSH$$aMicroglia: metabolism
000272510 7001_ $$aKunte, Sebastian T.$$b1
000272510 7001_ $$aWagner, Stephan$$b2
000272510 7001_ $$aBeumers, Philipp$$b3
000272510 7001_ $$00009-0006-7218-0591$$aSchaefer, Rebecca$$b4
000272510 7001_ $$0P:(DE-2719)9001654$$aZatcepin, Artem$$b5
000272510 7001_ $$0P:(DE-2719)9002722$$aLi, Yunlei$$b6$$udzne
000272510 7001_ $$aGriessl, Maria$$b7
000272510 7001_ $$aHoermann, Leonie$$b8
000272510 7001_ $$0P:(DE-2719)9001653$$aWind-Mark, Karin$$b9$$udzne
000272510 7001_ $$aBartenstein, Peter$$b10
000272510 7001_ $$0P:(DE-2719)2442036$$aTahirovic, Sabina$$b11$$udzne
000272510 7001_ $$aZiegler, Sibylle$$b12
000272510 7001_ $$0P:(DE-2719)9001539$$aBrendel, Matthias$$b13
000272510 7001_ $$0P:(DE-2719)9001652$$aGnörich, Johannes$$b14$$eLast author
000272510 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2024.120860$$gVol. 300, p. 120860 -$$p120860$$tNeuroImage$$v300$$x1053-8119$$y2024
000272510 8564_ $$uhttps://pub.dzne.de/record/272510/files/DZNE-2024-01186.pdf$$yOpenAccess
000272510 8564_ $$uhttps://pub.dzne.de/record/272510/files/DZNE-2024-01186.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000272510 909CO $$ooai:pub.dzne.de:272510$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000272510 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001654$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000272510 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9002722$$aExternal Institute$$b6$$kExtern
000272510 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001653$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b9$$kDZNE
000272510 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2442036$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b11$$kDZNE
000272510 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001539$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b13$$kDZNE
000272510 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001652$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b14$$kDZNE
000272510 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000272510 9141_ $$y2024
000272510 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000272510 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000272510 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
000272510 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
000272510 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
000272510 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2022$$d2023-10-21
000272510 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
000272510 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:47:40Z
000272510 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:47:40Z
000272510 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000272510 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-21
000272510 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000272510 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000272510 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
000272510 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-21
000272510 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2022$$d2023-10-21
000272510 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000272510 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000272510 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
000272510 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000272510 9201_ $$0I:(DE-2719)1110007$$kAG Haass$$lMolecular Neurodegeneration$$x0
000272510 9201_ $$0I:(DE-2719)1140003$$kAG Tahirovic$$lJuvenile Neurodegeneration$$x1
000272510 980__ $$ajournal
000272510 980__ $$aVDB
000272510 980__ $$aUNRESTRICTED
000272510 980__ $$aI:(DE-2719)1110007
000272510 980__ $$aI:(DE-2719)1140003
000272510 9801_ $$aFullTexts