000272595 001__ 272595
000272595 005__ 20241017164444.0
000272595 0247_ $$2doi$$a10.1113/JP285671
000272595 0247_ $$2pmid$$apmid:39216085
000272595 0247_ $$2ISSN$$a0022-3751
000272595 0247_ $$2ISSN$$a1469-7793
000272595 037__ $$aDZNE-2024-01216
000272595 041__ $$aEnglish
000272595 082__ $$a610
000272595 1001_ $$00000-0002-8784-9175$$aSchieferstein, Natalie$$b0
000272595 245__ $$aPropagation of sharp wave-ripple activity in the mouse hippocampal CA3 subfield in vitro.
000272595 260__ $$aHoboken, NJ$$bWiley-Blackwell$$c2024
000272595 3367_ $$2DRIVER$$aarticle
000272595 3367_ $$2DataCite$$aOutput Types/Journal article
000272595 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1729175232_2186
000272595 3367_ $$2BibTeX$$aARTICLE
000272595 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000272595 3367_ $$00$$2EndNote$$aJournal Article
000272595 520__ $$aSharp wave-ripple complexes (SPW-Rs) are spontaneous oscillatory events that characterize hippocampal activity during resting periods and slow-wave sleep. SPW-Rs are related to memory consolidation - the process during which newly acquired memories are transformed into long-lasting memory traces. To test the involvement of SPW-Rs in this process, it is crucial to understand how SPW-Rs originate and propagate throughout the hippocampus. SPW-Rs can originate in CA3, and they typically spread from CA3 to CA1, but little is known about their formation within CA3. To investigate the generation and propagation of SPW-Rs in CA3, we recorded from mouse hippocampal slices using multi-electrode arrays and patch-clamp electrodes. We characterized extracellular and intracellular correlates of SPW-Rs and quantified their propagation along the pyramidal cell layer of CA3. We found that a hippocampal slice can be described by a speed and a direction of propagation of SPW-Rs. The preferred propagation direction was from CA3c (the subfield closer to the dentate gyrus) toward CA3a (the subfield at the boundary to CA2). In patch-clamp recordings from CA3 pyramidal neurons, propagation was estimated separately for excitatory and inhibitory currents associated with SPW-Rs. We found that propagation speed and direction of excitatory and inhibitory currents were correlated. The magnitude of the speed of propagation of SPW-Rs within CA3 was consistent with the speed of propagation of action potentials in axons of CA3 principal cells. KEY POINTS: Hippocampal sharp waves are considered important for memory consolidation; therefore, it is of interest to understand the mechanisms of their generation and propagation. Here, we used two different approaches to study the propagation of sharp waves in mouse CA3 in vitro: multi-electrode arrays and multiple single-cell recordings. We find a preferred direction of propagation of sharp waves from CA3c toward CA3a - both in the local field potential and in sharp wave-associated excitatory and inhibitory synaptic activity. The speed of sharp wave propagation is consistent with the speed of action potential propagation along the axons of CA3 pyramidal neurons. These new insights into the dynamics of sharp waves in the CA3 network will inform future experiments and theoretical models of sharp-wave generation mechanisms.
000272595 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000272595 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000272595 650_7 $$2Other$$aCA3a/CA3b/CA3c subregions
000272595 650_7 $$2Other$$ahippocampus
000272595 650_7 $$2Other$$amouse
000272595 650_7 $$2Other$$amulti‐electrode array recording
000272595 650_7 $$2Other$$apatch‐clamp recording
000272595 650_7 $$2Other$$asharp wave‐ripple complexes
000272595 650_2 $$2MeSH$$aAnimals
000272595 650_2 $$2MeSH$$aCA3 Region, Hippocampal: physiology
000272595 650_2 $$2MeSH$$aMice
000272595 650_2 $$2MeSH$$aMice, Inbred C57BL
000272595 650_2 $$2MeSH$$aMale
000272595 650_2 $$2MeSH$$aPyramidal Cells: physiology
000272595 650_2 $$2MeSH$$aAction Potentials: physiology
000272595 650_2 $$2MeSH$$aPatch-Clamp Techniques
000272595 7001_ $$aDel Toro, Ana$$b1
000272595 7001_ $$00000-0002-0449-5464$$aEvangelista, Roberta$$b2
000272595 7001_ $$0P:(DE-2719)2811257$$aImbrosci, Barbara$$b3$$udzne
000272595 7001_ $$00000-0002-5127-1893$$aSwaminathan, Aarti$$b4
000272595 7001_ $$0P:(DE-2719)2810725$$aSchmitz, Dietmar$$b5$$udzne
000272595 7001_ $$00000-0001-5203-0736$$aMaier, Nikolaus$$b6
000272595 7001_ $$00000-0002-5344-2983$$aKempter, Richard$$b7
000272595 773__ $$0PERI:(DE-600)1475290-6$$a10.1113/JP285671$$gVol. 602, no. 19, p. 5039 - 5059$$n19$$p5039 - 5059$$tThe journal of physiology$$v602$$x0022-3751$$y2024
000272595 8564_ $$uhttps://pub.dzne.de/record/272595/files/DZNE-2024-01216.pdf$$yOpenAccess
000272595 8564_ $$uhttps://pub.dzne.de/record/272595/files/DZNE-2024-01216.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000272595 909CO $$ooai:pub.dzne.de:272595$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000272595 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811257$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000272595 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810725$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000272595 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000272595 9141_ $$y2024
000272595 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000272595 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000272595 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
000272595 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
000272595 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
000272595 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYSIOL-LONDON : 2022$$d2023-10-21
000272595 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-21$$wger
000272595 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000272595 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
000272595 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000272595 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000272595 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000272595 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
000272595 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHYSIOL-LONDON : 2022$$d2023-10-21
000272595 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000272595 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-21
000272595 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000272595 9201_ $$0I:(DE-2719)1810004$$kAG Schmitz$$lNetwork Dysfunction$$x0
000272595 980__ $$ajournal
000272595 980__ $$aVDB
000272595 980__ $$aUNRESTRICTED
000272595 980__ $$aI:(DE-2719)1810004
000272595 9801_ $$aFullTexts