000272819 001__ 272819
000272819 005__ 20250127091758.0
000272819 0247_ $$2pmc$$apmc:PMC11489197
000272819 0247_ $$2doi$$a10.1007/s12311-024-01677-y
000272819 0247_ $$2pmid$$apmid:38436911
000272819 0247_ $$2ISSN$$a1473-4222
000272819 0247_ $$2ISSN$$a1473-4230
000272819 037__ $$aDZNE-2024-01237
000272819 041__ $$aEnglish
000272819 082__ $$a610
000272819 1001_ $$aScaravilli, Alessandra$$b0
000272819 245__ $$aCHARON: An Imaging-Based Diagnostic Algorithm to Navigate Through the Sea of Hereditary Degenerative Ataxias.
000272819 260__ $$aNew York$$bSpringer US$$c2024
000272819 3367_ $$2DRIVER$$aarticle
000272819 3367_ $$2DataCite$$aOutput Types/Journal article
000272819 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1729494500_2184$$xReview Article
000272819 3367_ $$2BibTeX$$aARTICLE
000272819 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000272819 3367_ $$00$$2EndNote$$aJournal Article
000272819 520__ $$aThe complexity in diagnosing hereditary degenerative ataxias lies not only in their rarity, but also in the variety of different genetic conditions that can determine sometimes similar and overlapping clinical findings. In this light, Magnetic Resonance Imaging (MRI) plays a key role in the evaluation of these conditions, being a fundamental diagnostic tool needed not only to exclude other causes determining the observed clinical phenotype, but also to proper guide to an adequate genetic testing. Here, we propose an MRI-based diagnostic algorithm named CHARON (Characterization of Hereditary Ataxias Relying On Neuroimaging), to help in disentangling among the numerous, and apparently very similar, hereditary degenerative ataxias. Being conceived from a neuroradiological standpoint, it is based primarily on an accurate evaluation of the observed MRI findings, with the first and most important being the pattern of cerebellar atrophy. Along with the evaluation of the presence, or absence, of additional signal changes and/or supratentorial involvement, CHARON allows for the identification of a small groups of ataxias sharing similar imaging features. The integration of additional MRI findings, demographic, clinical and laboratory data allow then for the identification of typical, and in some cases pathognomonic, phenotypes of hereditary ataxias.
000272819 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000272819 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000272819 650_7 $$2Other$$aAlgorithm
000272819 650_7 $$2Other$$aAtaxia
000272819 650_7 $$2Other$$aMagnetic Resonance Imaging
000272819 650_7 $$2Other$$aNeuroimaging
000272819 650_2 $$2MeSH$$aHumans
000272819 650_2 $$2MeSH$$aAlgorithms
000272819 650_2 $$2MeSH$$aMagnetic Resonance Imaging: methods
000272819 650_2 $$2MeSH$$aNeuroimaging: methods
000272819 7001_ $$aTranfa, Mario$$b1
000272819 7001_ $$aPontillo, Giuseppe$$b2
000272819 7001_ $$aBrais, Bernard$$b3
000272819 7001_ $$aDe Michele, Giovanna$$b4
000272819 7001_ $$aLa Piana, Roberta$$b5
000272819 7001_ $$aSaccà, Francesco$$b6
000272819 7001_ $$aSantorelli, Filippo Maria$$b7
000272819 7001_ $$0P:(DE-2719)2811275$$aSynofzik, Matthis$$b8$$udzne
000272819 7001_ $$aBrunetti, Arturo$$b9
000272819 7001_ $$aCocozza, Sirio$$b10
000272819 773__ $$0PERI:(DE-600)2071266-2$$a10.1007/s12311-024-01677-y$$gVol. 23, no. 5, p. 2122 - 2129$$n5$$p2122 - 2129$$tThe cerebellum$$v23$$x1473-4222$$y2024
000272819 8564_ $$uhttps://pub.dzne.de/record/272819/files/DZNE-2024-01237.pdf$$yOpenAccess
000272819 8564_ $$uhttps://pub.dzne.de/record/272819/files/DZNE-2024-01237.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000272819 909CO $$ooai:pub.dzne.de:272819$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000272819 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811275$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000272819 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000272819 9141_ $$y2024
000272819 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
000272819 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
000272819 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000272819 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-24
000272819 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCEREBELLUM : 2022$$d2023-08-24
000272819 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-08-24$$wger
000272819 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
000272819 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
000272819 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-24
000272819 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000272819 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-24
000272819 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
000272819 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
000272819 9201_ $$0I:(DE-2719)1210000$$kAG Gasser$$lParkinson Genetics$$x0
000272819 980__ $$ajournal
000272819 980__ $$aVDB
000272819 980__ $$aUNRESTRICTED
000272819 980__ $$aI:(DE-2719)1210000
000272819 9801_ $$aFullTexts