001     272819
005     20250127091758.0
024 7 _ |a pmc:PMC11489197
|2 pmc
024 7 _ |a 10.1007/s12311-024-01677-y
|2 doi
024 7 _ |a pmid:38436911
|2 pmid
024 7 _ |a 1473-4222
|2 ISSN
024 7 _ |a 1473-4230
|2 ISSN
037 _ _ |a DZNE-2024-01237
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Scaravilli, Alessandra
|b 0
245 _ _ |a CHARON: An Imaging-Based Diagnostic Algorithm to Navigate Through the Sea of Hereditary Degenerative Ataxias.
260 _ _ |a New York
|c 2024
|b Springer US
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1729494500_2184
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The complexity in diagnosing hereditary degenerative ataxias lies not only in their rarity, but also in the variety of different genetic conditions that can determine sometimes similar and overlapping clinical findings. In this light, Magnetic Resonance Imaging (MRI) plays a key role in the evaluation of these conditions, being a fundamental diagnostic tool needed not only to exclude other causes determining the observed clinical phenotype, but also to proper guide to an adequate genetic testing. Here, we propose an MRI-based diagnostic algorithm named CHARON (Characterization of Hereditary Ataxias Relying On Neuroimaging), to help in disentangling among the numerous, and apparently very similar, hereditary degenerative ataxias. Being conceived from a neuroradiological standpoint, it is based primarily on an accurate evaluation of the observed MRI findings, with the first and most important being the pattern of cerebellar atrophy. Along with the evaluation of the presence, or absence, of additional signal changes and/or supratentorial involvement, CHARON allows for the identification of a small groups of ataxias sharing similar imaging features. The integration of additional MRI findings, demographic, clinical and laboratory data allow then for the identification of typical, and in some cases pathognomonic, phenotypes of hereditary ataxias.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Algorithm
|2 Other
650 _ 7 |a Ataxia
|2 Other
650 _ 7 |a Magnetic Resonance Imaging
|2 Other
650 _ 7 |a Neuroimaging
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Algorithms
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
650 _ 2 |a Neuroimaging: methods
|2 MeSH
700 1 _ |a Tranfa, Mario
|b 1
700 1 _ |a Pontillo, Giuseppe
|b 2
700 1 _ |a Brais, Bernard
|b 3
700 1 _ |a De Michele, Giovanna
|b 4
700 1 _ |a La Piana, Roberta
|b 5
700 1 _ |a Saccà, Francesco
|b 6
700 1 _ |a Santorelli, Filippo Maria
|b 7
700 1 _ |a Synofzik, Matthis
|0 P:(DE-2719)2811275
|b 8
|u dzne
700 1 _ |a Brunetti, Arturo
|b 9
700 1 _ |a Cocozza, Sirio
|b 10
773 _ _ |a 10.1007/s12311-024-01677-y
|g Vol. 23, no. 5, p. 2122 - 2129
|0 PERI:(DE-600)2071266-2
|n 5
|p 2122 - 2129
|t The cerebellum
|v 23
|y 2024
|x 1473-4222
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/272819/files/DZNE-2024-01237.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/272819/files/DZNE-2024-01237.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:272819
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2811275
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CEREBELLUM : 2022
|d 2023-08-24
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-08-24
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
920 1 _ |0 I:(DE-2719)1210000
|k AG Gasser
|l Parkinson Genetics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1210000
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21