Home > Publications Database > Machine learning reveals prominent spontaneous behavioral changes and treatment efficacy in humanized and transgenic Alzheimer's disease models. > print |
001 | 272860 | ||
005 | 20250127091444.0 | ||
024 | 7 | _ | |a 10.1016/j.celrep.2024.114870 |2 doi |
024 | 7 | _ | |a pmid:39427315 |2 pmid |
024 | 7 | _ | |a 2211-1247 |2 ISSN |
024 | 7 | _ | |a 2639-1856 |2 ISSN |
024 | 7 | _ | |a altmetric:169532029 |2 altmetric |
037 | _ | _ | |a DZNE-2024-01278 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Miller, Stephanie R |b 0 |
245 | _ | _ | |a Machine learning reveals prominent spontaneous behavioral changes and treatment efficacy in humanized and transgenic Alzheimer's disease models. |
260 | _ | _ | |a [New York, NY] |c 2024 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1729851078_18936 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Computer-vision and machine-learning (ML) approaches are being developed to provide scalable, unbiased, and sensitive methods to assess mouse behavior. Here, we used the ML-based variational animal motion embedding (VAME) segmentation platform to assess spontaneous behavior in humanized App knockin and transgenic APP models of Alzheimer's disease (AD) and to test the role of AD-related neuroinflammation in these behavioral manifestations. We found marked alterations in spontaneous behavior in AppNL-G-F and 5xFAD mice, including age-dependent changes in motif utilization, disorganized behavioral sequences, increased transitions, and randomness. Notably, blocking fibrinogen-microglia interactions in 5xFAD-Fggγ390-396A mice largely prevented spontaneous behavioral alterations, indicating a key role for neuroinflammation. Thus, AD-related spontaneous behavioral alterations are prominent in knockin and transgenic models and sensitive to therapeutic interventions. VAME outcomes had higher specificity and sensitivity than conventional behavioral outcomes. We conclude that spontaneous behavior effectively captures age- and sex-dependent disease manifestations and treatment efficacy in AD models. |
536 | _ | _ | |a 351 - Brain Function (POF4-351) |0 G:(DE-HGF)POF4-351 |c POF4-351 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
650 | _ | 7 | |a App-KI |2 Other |
650 | _ | 7 | |a CP: Neuroscience |2 Other |
650 | _ | 7 | |a DeepLabCut |2 Other |
650 | _ | 7 | |a Keypoint-MoSeq |2 Other |
650 | _ | 7 | |a amyloid |2 Other |
650 | _ | 7 | |a behavioral segmentation |2 Other |
650 | _ | 7 | |a cognition |2 Other |
650 | _ | 7 | |a naturalistic behavior |2 Other |
650 | _ | 7 | |a open field |2 Other |
650 | _ | 7 | |a pose estimation |2 Other |
650 | _ | 7 | |a preclinical |2 Other |
650 | _ | 2 | |a Alzheimer Disease: pathology |2 MeSH |
650 | _ | 2 | |a Alzheimer Disease: genetics |2 MeSH |
650 | _ | 2 | |a Animals |2 MeSH |
650 | _ | 2 | |a Machine Learning |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Mice, Transgenic |2 MeSH |
650 | _ | 2 | |a Disease Models, Animal |2 MeSH |
650 | _ | 2 | |a Mice |2 MeSH |
650 | _ | 2 | |a Behavior, Animal |2 MeSH |
650 | _ | 2 | |a Male |2 MeSH |
650 | _ | 2 | |a Female |2 MeSH |
650 | _ | 2 | |a Treatment Outcome |2 MeSH |
650 | _ | 2 | |a Amyloid beta-Protein Precursor: genetics |2 MeSH |
650 | _ | 2 | |a Amyloid beta-Protein Precursor: metabolism |2 MeSH |
650 | _ | 2 | |a Mice, Inbred C57BL |2 MeSH |
700 | 1 | _ | |a Luxem, Kevin |0 P:(DE-2719)2812453 |b 1 |u dzne |
700 | 1 | _ | |a Lauderdale, Kelli |b 2 |
700 | 1 | _ | |a Nambiar, Pranav |b 3 |
700 | 1 | _ | |a Honma, Patrick S |b 4 |
700 | 1 | _ | |a Ly, Katie K |b 5 |
700 | 1 | _ | |a Bangera, Shreya |b 6 |
700 | 1 | _ | |a Bullock, Mary |b 7 |
700 | 1 | _ | |a Shin, Jia |b 8 |
700 | 1 | _ | |a Kaliss, Nick |b 9 |
700 | 1 | _ | |a Qiu, Yuechen |b 10 |
700 | 1 | _ | |a Cai, Catherine |b 11 |
700 | 1 | _ | |a Shen, Kevin |b 12 |
700 | 1 | _ | |a Mallen, K Dakota |b 13 |
700 | 1 | _ | |a Yan, Zhaoqi |b 14 |
700 | 1 | _ | |a Mendiola, Andrew S |b 15 |
700 | 1 | _ | |a Saito, Takashi |b 16 |
700 | 1 | _ | |a Saido, Takaomi C |b 17 |
700 | 1 | _ | |a Pico, Alexander R |b 18 |
700 | 1 | _ | |a Thomas, Reuben |b 19 |
700 | 1 | _ | |a Roberson, Erik D |b 20 |
700 | 1 | _ | |a Akassoglou, Katerina |b 21 |
700 | 1 | _ | |a Bauer, Pavol |0 P:(DE-2719)2812543 |b 22 |u dzne |
700 | 1 | _ | |a Remy, Stefan |0 P:(DE-2719)2810375 |b 23 |u dzne |
700 | 1 | _ | |a Palop, Jorge J |b 24 |
773 | _ | _ | |a 10.1016/j.celrep.2024.114870 |g Vol. 43, no. 11, p. 114870 - |0 PERI:(DE-600)2649101-1 |n 11 |p 114870 |t Cell reports |v 43 |y 2024 |x 2211-1247 |
856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/272860/files/DZNE-2024-01278.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/272860/files/DZNE-2024-01278.pdf?subformat=pdfa |
909 | C | O | |o oai:pub.dzne.de:272860 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 1 |6 P:(DE-2719)2812453 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 22 |6 P:(DE-2719)2812543 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 23 |6 P:(DE-2719)2810375 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-351 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Brain Function |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-26 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CELL REP : 2022 |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T08:49:39Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T08:49:39Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-26 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-26 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-05-02T08:49:39Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CELL REP : 2022 |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-26 |
920 | 1 | _ | |0 I:(DE-2719)1013006 |k AG Remy |l Neuronal Networks |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-2719)1013006 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|