001     272949
005     20241128165020.0
024 7 _ |a 10.1093/bioadv/vbae165
|2 doi
024 7 _ |a pmid:39544628
|2 pmid
024 7 _ |a pmc:PMC11562964
|2 pmc
037 _ _ |a DZNE-2024-01329
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Breimann, Stephan
|0 P:(DE-2719)9001161
|b 0
|e First author
245 _ _ |a AAclust: k-optimized clustering for selecting redundancy-reduced sets of amino acid scales.
260 _ _ |a Oxford
|c 2024
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1732782718_2418
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Amino acid scales are crucial for sequence-based protein prediction tasks, yet no gold standard scale set or simple scale selection methods exist. We developed AAclust, a wrapper for clustering models that require a pre-defined number of clusters k, such as k-means. AAclust obtains redundancy-reduced scale sets by clustering and selecting one representative scale per cluster, where k can either be optimized by AAclust or defined by the user. The utility of AAclust scale selections was assessed by applying machine learning models to 24 protein benchmark datasets. We found that top-performing scale sets were different for each benchmark dataset and significantly outperformed scale sets used in previous studies. Noteworthy is the strong dependence of the model performance on the scale set size. AAclust enables a systematic optimization of scale-based feature engineering in machine learning applications.The AAclust algorithm is part of AAanalysis, a Python-based framework for interpretable sequence-based protein prediction, which is documented and accessible at https://aaanalysis.readthedocs.io/en/latest and https://github.com/breimanntools/aaanalysis.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
700 1 _ |a Frishman, Dmitrij
|0 0000-0002-9006-4707
|b 1
773 _ _ |a 10.1093/bioadv/vbae165
|g Vol. 4, no. 1, p. vbae165
|0 PERI:(DE-600)3076075-6
|n 1
|p vbae165
|t Bioinformatics advances
|v 4
|y 2024
|x 2635-0041
856 4 _ |u https://pub.dzne.de/record/272949/files/DZNE-2024-01329%20SUP1.zip
856 4 _ |u https://pub.dzne.de/record/272949/files/DZNE-2024-01329%20SUP2.pdf
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/272949/files/DZNE-2024-01329.pdf
856 4 _ |x pdfa
|u https://pub.dzne.de/record/272949/files/DZNE-2024-01329%20SUP2.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/272949/files/DZNE-2024-01329.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:272949
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001161
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-11-16T17:08:20Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-11-16T17:08:20Z
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-11-16T17:08:20Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-30
920 1 _ |0 I:(DE-2719)1110000-1
|k AG Steiner
|l Biochemistry of γ-Secretase
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1110000-1
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21