001     272953
005     20241126104230.0
024 7 _ |a 10.1038/s41591-024-03214-0
|2 doi
024 7 _ |a pmid:39266748
|2 pmid
024 7 _ |a pmc:PMC11564094
|2 pmc
024 7 _ |a 1078-8956
|2 ISSN
024 7 _ |a 1546-170X
|2 ISSN
024 7 _ |a altmetric:167238148
|2 altmetric
037 _ _ |a DZNE-2024-01332
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Heumos, Lukas
|b 0
245 _ _ |a An open-source framework for end-to-end analysis of electronic health record data.
260 _ _ |a New York, NY
|c 2024
|b Nature America Inc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1732004737_9133
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a With progressive digitalization of healthcare systems worldwide, large-scale collection of electronic health records (EHRs) has become commonplace. However, an extensible framework for comprehensive exploratory analysis that accounts for data heterogeneity is missing. Here we introduce ehrapy, a modular open-source Python framework designed for exploratory analysis of heterogeneous epidemiology and EHR data. ehrapy incorporates a series of analytical steps, from data extraction and quality control to the generation of low-dimensional representations. Complemented by rich statistical modules, ehrapy facilitates associating patients with disease states, differential comparison between patient clusters, survival analysis, trajectory inference, causal inference and more. Leveraging ontologies, ehrapy further enables data sharing and training EHR deep learning models, paving the way for foundational models in biomedical research. We demonstrate ehrapy's features in six distinct examples. We applied ehrapy to stratify patients affected by unspecified pneumonia into finer-grained phenotypes. Furthermore, we reveal biomarkers for significant differences in survival among these groups. Additionally, we quantify medication-class effects of pneumonia medications on length of stay. We further leveraged ehrapy to analyze cardiovascular risks across different data modalities. We reconstructed disease state trajectories in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on imaging data. Finally, we conducted a case study to demonstrate how ehrapy can detect and mitigate biases in EHR data. ehrapy, thus, provides a framework that we envision will standardize analysis pipelines on EHR data and serve as a cornerstone for the community.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Electronic Health Records
|2 MeSH
650 _ 2 |a COVID-19: epidemiology
|2 MeSH
650 _ 2 |a SARS-CoV-2
|2 MeSH
650 _ 2 |a Pneumonia: epidemiology
|2 MeSH
650 _ 2 |a Deep Learning
|2 MeSH
700 1 _ |a Ehmele, Philipp
|b 1
700 1 _ |a Treis, Tim
|b 2
700 1 _ |a Upmeier Zu Belzen, Julius
|0 0000-0002-0966-4458
|b 3
700 1 _ |a Roellin, Eljas
|b 4
700 1 _ |a May, Lilly
|b 5
700 1 _ |a Namsaraeva, Altana
|b 6
700 1 _ |a Horlava, Nastassya
|b 7
700 1 _ |a Shitov, Vladimir A
|0 0000-0002-1960-8812
|b 8
700 1 _ |a Zhang, Xinyue
|0 0000-0003-4806-4049
|b 9
700 1 _ |a Zappia, Luke
|0 0000-0001-7744-8565
|b 10
700 1 _ |a Knoll, Rainer
|0 P:(DE-2719)9000620
|b 11
|u dzne
700 1 _ |a Lang, Niklas J
|b 12
700 1 _ |a Hetzel, Leon
|b 13
700 1 _ |a Virshup, Isaac
|b 14
700 1 _ |a Sikkema, Lisa
|0 0000-0001-9686-6295
|b 15
700 1 _ |a Curion, Fabiola
|b 16
700 1 _ |a Eils, Roland
|b 17
700 1 _ |a Schiller, Herbert B
|b 18
700 1 _ |a Hilgendorff, Anne
|b 19
700 1 _ |a Theis, Fabian J
|0 0000-0002-2419-1943
|b 20
773 _ _ |a 10.1038/s41591-024-03214-0
|g Vol. 30, no. 11, p. 3369 - 3380
|0 PERI:(DE-600)1484517-9
|n 11
|p 3369 - 3380
|t Nature medicine
|v 30
|y 2024
|x 1078-8956
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/272953/files/DZNE-2024-01332.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/272953/files/DZNE-2024-01332.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:272953
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)9000620
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT MED : 2022
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2023-08-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-29
915 _ _ |a IF >= 80
|0 StatID:(DE-HGF)9980
|2 StatID
|b NAT MED : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
920 1 _ |0 I:(DE-2719)5000082
|k AG Aschenbrenner
|l Aging and Immunity
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)5000082
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21