000273901 001__ 273901
000273901 005__ 20250127091520.0
000273901 0247_ $$2pmc$$apmc:PMC11604840
000273901 0247_ $$2doi$$a10.1002/mrm.30305
000273901 0247_ $$2pmid$$apmid:39301770
000273901 0247_ $$2ISSN$$a1522-2594
000273901 0247_ $$2ISSN$$a0740-3194
000273901 037__ $$aDZNE-2024-01380
000273901 041__ $$aEnglish
000273901 082__ $$a610
000273901 1001_ $$0P:(DE-2719)2811521$$aVölzke, Yannik$$b0$$eFirst author$$udzne
000273901 245__ $$aCalibration-free whole-brain CEST imaging at 7T with parallel transmit pulse design for saturation homogeneity utilizing universal pulses (PUSHUP).
000273901 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2025
000273901 3367_ $$2DRIVER$$aarticle
000273901 3367_ $$2DataCite$$aOutput Types/Journal article
000273901 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1733317045_24007
000273901 3367_ $$2BibTeX$$aARTICLE
000273901 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000273901 3367_ $$00$$2EndNote$$aJournal Article
000273901 520__ $$aChemical exchange saturation transfer (CEST) measurements at ultra-high field (UHF) suffer from strong saturation inhomogeneity. Retrospective correction of this inhomogeneity is possible to some extent, but requires a time-consuming repetition of the measurement. Here, we propose a calibration-free parallel transmit (pTx)-based saturation scheme that homogenizes the saturation over the imaging volume, which we call PUlse design for Saturation Homogeneity utilizing Universal Pulses (PUSHUP).Magnetization transfer effects depend on the saturation B 1 rms $$ {\mathrm{B}}_1^{\mathrm{rms}} $$ . PUSHUP homogenizes the saturation B 1 rms $$ {\mathrm{B}}_1^{\mathrm{rms}} $$ by using multiple saturation pulses with alternating B 1 $$ {\mathrm{B}}_1 $$ -shims. Using a database of B 1 $$ {\mathrm{B}}_1 $$ maps, universal pulses are calculated that remove the necessity of time-consuming, subject-based pulse calculation during the measurement.PUSHUP was combined with a whole-brain three-dimensional-echo planar imaging (3D-EPI) readout. Two PUSHUP saturation modules were calculated by either applying whole-brain or cerebellum masks to the database maps. The saturation homogeneity and the group mean CEST amplitudes were calculated for different B 1 $$ {\mathrm{B}}_1 $$ -correction methods and were compared to circular polarized (CP) saturation in five healthy volunteers using an eight-channel transmit coil at 7 Tesla.In contrast to CP saturation, where accurate CEST maps were impossible to obtain in the cerebellum, even with extensive B 1 $$ {\mathrm{B}}_1 $$ -correction, PUSHUP CEST maps were artifact-free throughout the whole brain. A 1-point retrospective B 1 $$ {\mathrm{B}}_1 $$ -correction, that does not need repeated measurements, sufficiently removed the effect of residual saturation inhomogeneity.The presented method allows for homogeneous whole-brain CEST imaging at 7 Tesla without the need of a repetition-based B 1 $$ {\mathrm{B}}_1 $$ -correction or online pulse calculation. With the fast 3D-EPI readout, whole-brain CEST imaging with 45 saturation offsets is possible at 1.6 mm resolution in under 4 min.
000273901 536__ $$0G:(DE-HGF)POF4-354$$a354 - Disease Prevention and Healthy Aging (POF4-354)$$cPOF4-354$$fPOF IV$$x0
000273901 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000273901 650_7 $$2Other$$aCEST
000273901 650_7 $$2Other$$amagnetization transfer
000273901 650_7 $$2Other$$aparallel transmit
000273901 650_7 $$2Other$$aultra‐high field
000273901 650_7 $$2Other$$auniversal pulses
000273901 650_2 $$2MeSH$$aHumans
000273901 650_2 $$2MeSH$$aBrain: diagnostic imaging
000273901 650_2 $$2MeSH$$aMagnetic Resonance Imaging: methods
000273901 650_2 $$2MeSH$$aAlgorithms
000273901 650_2 $$2MeSH$$aImage Processing, Computer-Assisted: methods
000273901 650_2 $$2MeSH$$aPhantoms, Imaging
000273901 650_2 $$2MeSH$$aCalibration
000273901 650_2 $$2MeSH$$aAdult
000273901 650_2 $$2MeSH$$aMale
000273901 650_2 $$2MeSH$$aFemale
000273901 7001_ $$0P:(DE-2719)2811556$$aAkbey, Suzan$$b1$$udzne
000273901 7001_ $$0P:(DE-2719)9001317$$aLöwen, Daniel$$b2
000273901 7001_ $$0P:(DE-2719)2810559$$aPracht, Eberhard Daniel$$b3
000273901 7001_ $$0P:(DE-2719)2810697$$aStirnberg, Rüdiger$$b4
000273901 7001_ $$00000-0002-4997-2738$$aGras, Vincent$$b5
000273901 7001_ $$00000-0003-2144-2484$$aBoulant, Nicolas$$b6
000273901 7001_ $$00000-0001-9780-3616$$aZaiss, Moritz$$b7
000273901 7001_ $$0P:(DE-2719)2810538$$aStöcker, Tony$$b8$$eLast author
000273901 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.30305$$gVol. 93, no. 2, p. 630 - 642$$n2$$p630 - 642$$tMagnetic resonance in medicine$$v93$$x1522-2594$$y2025
000273901 8564_ $$uhttps://pub.dzne.de/record/273901/files/DZNE-2024-01380%20SUP.docx
000273901 8564_ $$uhttps://pub.dzne.de/record/273901/files/DZNE-2024-01380.pdf$$yOpenAccess
000273901 8564_ $$uhttps://pub.dzne.de/record/273901/files/DZNE-2024-01380%20SUP.doc
000273901 8564_ $$uhttps://pub.dzne.de/record/273901/files/DZNE-2024-01380%20SUP.odt
000273901 8564_ $$uhttps://pub.dzne.de/record/273901/files/DZNE-2024-01380%20SUP.pdf
000273901 8564_ $$uhttps://pub.dzne.de/record/273901/files/DZNE-2024-01380.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000273901 909CO $$ooai:pub.dzne.de:273901$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000273901 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811521$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000273901 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811556$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000273901 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001317$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000273901 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810559$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000273901 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810697$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000273901 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810538$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000273901 9131_ $$0G:(DE-HGF)POF4-354$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Prevention and Healthy Aging$$x0
000273901 9141_ $$y2024
000273901 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000273901 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000273901 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
000273901 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
000273901 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2022$$d2023-10-21
000273901 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000273901 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-21$$wger
000273901 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000273901 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
000273901 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000273901 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
000273901 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000273901 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000273901 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-21
000273901 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
000273901 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000273901 9201_ $$0I:(DE-2719)1013026$$kAG Stöcker$$lMR Physics$$x0
000273901 980__ $$ajournal
000273901 980__ $$aVDB
000273901 980__ $$aUNRESTRICTED
000273901 980__ $$aI:(DE-2719)1013026
000273901 9801_ $$aFullTexts