001     273901
005     20250127091520.0
024 7 _ |a pmc:PMC11604840
|2 pmc
024 7 _ |a 10.1002/mrm.30305
|2 doi
024 7 _ |a pmid:39301770
|2 pmid
024 7 _ |a 1522-2594
|2 ISSN
024 7 _ |a 0740-3194
|2 ISSN
037 _ _ |a DZNE-2024-01380
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Völzke, Yannik
|0 P:(DE-2719)2811521
|b 0
|e First author
|u dzne
245 _ _ |a Calibration-free whole-brain CEST imaging at 7T with parallel transmit pulse design for saturation homogeneity utilizing universal pulses (PUSHUP).
260 _ _ |a New York, NY [u.a.]
|c 2025
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1733317045_24007
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Chemical exchange saturation transfer (CEST) measurements at ultra-high field (UHF) suffer from strong saturation inhomogeneity. Retrospective correction of this inhomogeneity is possible to some extent, but requires a time-consuming repetition of the measurement. Here, we propose a calibration-free parallel transmit (pTx)-based saturation scheme that homogenizes the saturation over the imaging volume, which we call PUlse design for Saturation Homogeneity utilizing Universal Pulses (PUSHUP).Magnetization transfer effects depend on the saturation B 1 rms $$ {\mathrm{B}}_1^{\mathrm{rms}} $$ . PUSHUP homogenizes the saturation B 1 rms $$ {\mathrm{B}}_1^{\mathrm{rms}} $$ by using multiple saturation pulses with alternating B 1 $$ {\mathrm{B}}_1 $$ -shims. Using a database of B 1 $$ {\mathrm{B}}_1 $$ maps, universal pulses are calculated that remove the necessity of time-consuming, subject-based pulse calculation during the measurement.PUSHUP was combined with a whole-brain three-dimensional-echo planar imaging (3D-EPI) readout. Two PUSHUP saturation modules were calculated by either applying whole-brain or cerebellum masks to the database maps. The saturation homogeneity and the group mean CEST amplitudes were calculated for different B 1 $$ {\mathrm{B}}_1 $$ -correction methods and were compared to circular polarized (CP) saturation in five healthy volunteers using an eight-channel transmit coil at 7 Tesla.In contrast to CP saturation, where accurate CEST maps were impossible to obtain in the cerebellum, even with extensive B 1 $$ {\mathrm{B}}_1 $$ -correction, PUSHUP CEST maps were artifact-free throughout the whole brain. A 1-point retrospective B 1 $$ {\mathrm{B}}_1 $$ -correction, that does not need repeated measurements, sufficiently removed the effect of residual saturation inhomogeneity.The presented method allows for homogeneous whole-brain CEST imaging at 7 Tesla without the need of a repetition-based B 1 $$ {\mathrm{B}}_1 $$ -correction or online pulse calculation. With the fast 3D-EPI readout, whole-brain CEST imaging with 45 saturation offsets is possible at 1.6 mm resolution in under 4 min.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a CEST
|2 Other
650 _ 7 |a magnetization transfer
|2 Other
650 _ 7 |a parallel transmit
|2 Other
650 _ 7 |a ultra‐high field
|2 Other
650 _ 7 |a universal pulses
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Brain: diagnostic imaging
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
650 _ 2 |a Algorithms
|2 MeSH
650 _ 2 |a Image Processing, Computer-Assisted: methods
|2 MeSH
650 _ 2 |a Phantoms, Imaging
|2 MeSH
650 _ 2 |a Calibration
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
700 1 _ |a Akbey, Suzan
|0 P:(DE-2719)2811556
|b 1
|u dzne
700 1 _ |a Löwen, Daniel
|0 P:(DE-2719)9001317
|b 2
700 1 _ |a Pracht, Eberhard Daniel
|0 P:(DE-2719)2810559
|b 3
700 1 _ |a Stirnberg, Rüdiger
|0 P:(DE-2719)2810697
|b 4
700 1 _ |a Gras, Vincent
|0 0000-0002-4997-2738
|b 5
700 1 _ |a Boulant, Nicolas
|0 0000-0003-2144-2484
|b 6
700 1 _ |a Zaiss, Moritz
|0 0000-0001-9780-3616
|b 7
700 1 _ |a Stöcker, Tony
|0 P:(DE-2719)2810538
|b 8
|e Last author
773 _ _ |a 10.1002/mrm.30305
|g Vol. 93, no. 2, p. 630 - 642
|0 PERI:(DE-600)1493786-4
|n 2
|p 630 - 642
|t Magnetic resonance in medicine
|v 93
|y 2025
|x 1522-2594
856 4 _ |u https://pub.dzne.de/record/273901/files/DZNE-2024-01380%20SUP.docx
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/273901/files/DZNE-2024-01380.pdf
856 4 _ |u https://pub.dzne.de/record/273901/files/DZNE-2024-01380%20SUP.doc
856 4 _ |u https://pub.dzne.de/record/273901/files/DZNE-2024-01380%20SUP.odt
856 4 _ |u https://pub.dzne.de/record/273901/files/DZNE-2024-01380%20SUP.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/273901/files/DZNE-2024-01380.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:273901
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2811521
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2811556
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9001317
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2810559
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2810697
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2810538
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MAGN RESON MED : 2022
|d 2023-10-21
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-21
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
920 1 _ |0 I:(DE-2719)1013026
|k AG Stöcker
|l MR Physics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013026
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21