000273920 001__ 273920
000273920 005__ 20250127091419.0
000273920 0247_ $$2pmc$$apmc:PMC11628805
000273920 0247_ $$2doi$$a10.1016/j.bpj.2024.11.004
000273920 0247_ $$2pmid$$apmid:39520054
000273920 0247_ $$2ISSN$$a0006-3495
000273920 0247_ $$2ISSN$$a1542-0086
000273920 037__ $$aDZNE-2024-01394
000273920 041__ $$aEnglish
000273920 082__ $$a570
000273920 1001_ $$aNeuhaus, Charlotte$$b0
000273920 245__ $$aMorphology and intervesicle distances in condensates of synaptic vesicles and synapsin.
000273920 260__ $$aBethesda, Md.$$bSoc.$$c2024
000273920 3367_ $$2DRIVER$$aarticle
000273920 3367_ $$2DataCite$$aOutput Types/Journal article
000273920 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1733823669_31710
000273920 3367_ $$2BibTeX$$aARTICLE
000273920 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000273920 3367_ $$00$$2EndNote$$aJournal Article
000273920 520__ $$aSynaptic vesicle clusters or pools are functionally important constituents of chemical synapses. In the so-called reserve and the active pools, neurotransmitter-loaded synaptic vesicles (SVs) are stored and conditioned for fusion with the synaptic membrane and subsequent neurotransmitter release during synaptic activity. Vesicle clusters can be considered as so-called membraneless compartments, which form by liquid-liquid phase separation. Synapsin as one of the most abundant synaptic proteins has been identified as a major driver of pool formation. It has been shown to induce liquid-liquid phase separation and form condensates on its own in solution, but also has been shown to integrate vesicles into condensates in vitro. In this process, the intrinsically disordered region of synapsin is believed to play a critical role. Here, we first investigate the solution structure of synapsin and SVs separately by small-angle x-ray scattering. In the limit of low momentum transfer q, the scattering curve for synapsin gives clear indication for supramolecular aggregation (condensation). We then study mixtures of SVs and synapsin-forming condensates, aiming at the morphology and intervesicle distances, i.e., the structure of the condensates in solution. To obtain the structure factor S(q) quantifying intervesicle correlation, we divide the scattering curve of condensates by that of pure SV suspensions. Analysis of S(q) in combination with numerical simulations of cluster aggregation indicates a noncompact fractal-like vesicular fluid with rather short intervesicle distances at the contact sites.
000273920 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000273920 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000273920 650_7 $$2NLM Chemicals$$aSynapsins
000273920 650_2 $$2MeSH$$aSynapsins: metabolism
000273920 650_2 $$2MeSH$$aSynapsins: chemistry
000273920 650_2 $$2MeSH$$aSynaptic Vesicles: metabolism
000273920 650_2 $$2MeSH$$aSynaptic Vesicles: chemistry
000273920 650_2 $$2MeSH$$aAnimals
000273920 650_2 $$2MeSH$$aScattering, Small Angle
000273920 650_2 $$2MeSH$$aX-Ray Diffraction
000273920 650_2 $$2MeSH$$aRats
000273920 650_2 $$2MeSH$$aBiomolecular Condensates: chemistry
000273920 650_2 $$2MeSH$$aBiomolecular Condensates: metabolism
000273920 7001_ $$aAlfken, Jette$$b1
000273920 7001_ $$aFrost, Jakob$$b2
000273920 7001_ $$aMatthews, Lauren$$b3
000273920 7001_ $$0P:(DE-2719)9000582$$aHoffmann, Christian$$b4$$udzne
000273920 7001_ $$aGanzella, Marcelo$$b5
000273920 7001_ $$0P:(DE-2719)9000670$$aMilovanovic, Dragomir$$b6$$udzne
000273920 7001_ $$aSalditt, Tim$$b7
000273920 773__ $$0PERI:(DE-600)1477214-0$$a10.1016/j.bpj.2024.11.004$$gVol. 123, no. 23, p. 4123 - 4134$$n23$$p4123 - 4134$$tBiophysical journal$$v123$$x0006-3495$$y2024
000273920 8564_ $$uhttps://pub.dzne.de/record/273920/files/DZNE-2024-01394%20SUP.zip
000273920 8564_ $$uhttps://pub.dzne.de/record/273920/files/DZNE-2024-01394.pdf$$yOpenAccess
000273920 8564_ $$uhttps://pub.dzne.de/record/273920/files/DZNE-2024-01394.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000273920 909CO $$ooai:pub.dzne.de:273920$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000273920 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000582$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000273920 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000670$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000273920 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000273920 9141_ $$y2024
000273920 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
000273920 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
000273920 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-23
000273920 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-23
000273920 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000273920 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOPHYS J : 2022$$d2023-08-23
000273920 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
000273920 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-23
000273920 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
000273920 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-23
000273920 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000273920 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
000273920 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-23
000273920 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
000273920 9201_ $$0I:(DE-2719)1813002$$kAG Milovanovic (Berlin)$$lMolecular Neuroscience$$x0
000273920 980__ $$ajournal
000273920 980__ $$aVDB
000273920 980__ $$aUNRESTRICTED
000273920 980__ $$aI:(DE-2719)1813002
000273920 9801_ $$aFullTexts