001     273920
005     20250127091419.0
024 7 _ |a pmc:PMC11628805
|2 pmc
024 7 _ |a 10.1016/j.bpj.2024.11.004
|2 doi
024 7 _ |a pmid:39520054
|2 pmid
024 7 _ |a 0006-3495
|2 ISSN
024 7 _ |a 1542-0086
|2 ISSN
037 _ _ |a DZNE-2024-01394
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Neuhaus, Charlotte
|b 0
245 _ _ |a Morphology and intervesicle distances in condensates of synaptic vesicles and synapsin.
260 _ _ |a Bethesda, Md.
|c 2024
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1733823669_31710
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Synaptic vesicle clusters or pools are functionally important constituents of chemical synapses. In the so-called reserve and the active pools, neurotransmitter-loaded synaptic vesicles (SVs) are stored and conditioned for fusion with the synaptic membrane and subsequent neurotransmitter release during synaptic activity. Vesicle clusters can be considered as so-called membraneless compartments, which form by liquid-liquid phase separation. Synapsin as one of the most abundant synaptic proteins has been identified as a major driver of pool formation. It has been shown to induce liquid-liquid phase separation and form condensates on its own in solution, but also has been shown to integrate vesicles into condensates in vitro. In this process, the intrinsically disordered region of synapsin is believed to play a critical role. Here, we first investigate the solution structure of synapsin and SVs separately by small-angle x-ray scattering. In the limit of low momentum transfer q, the scattering curve for synapsin gives clear indication for supramolecular aggregation (condensation). We then study mixtures of SVs and synapsin-forming condensates, aiming at the morphology and intervesicle distances, i.e., the structure of the condensates in solution. To obtain the structure factor S(q) quantifying intervesicle correlation, we divide the scattering curve of condensates by that of pure SV suspensions. Analysis of S(q) in combination with numerical simulations of cluster aggregation indicates a noncompact fractal-like vesicular fluid with rather short intervesicle distances at the contact sites.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Synapsins
|2 NLM Chemicals
650 _ 2 |a Synapsins: metabolism
|2 MeSH
650 _ 2 |a Synapsins: chemistry
|2 MeSH
650 _ 2 |a Synaptic Vesicles: metabolism
|2 MeSH
650 _ 2 |a Synaptic Vesicles: chemistry
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Scattering, Small Angle
|2 MeSH
650 _ 2 |a X-Ray Diffraction
|2 MeSH
650 _ 2 |a Rats
|2 MeSH
650 _ 2 |a Biomolecular Condensates: chemistry
|2 MeSH
650 _ 2 |a Biomolecular Condensates: metabolism
|2 MeSH
700 1 _ |a Alfken, Jette
|b 1
700 1 _ |a Frost, Jakob
|b 2
700 1 _ |a Matthews, Lauren
|b 3
700 1 _ |a Hoffmann, Christian
|0 P:(DE-2719)9000582
|b 4
|u dzne
700 1 _ |a Ganzella, Marcelo
|b 5
700 1 _ |a Milovanovic, Dragomir
|0 P:(DE-2719)9000670
|b 6
|u dzne
700 1 _ |a Salditt, Tim
|b 7
773 _ _ |a 10.1016/j.bpj.2024.11.004
|g Vol. 123, no. 23, p. 4123 - 4134
|0 PERI:(DE-600)1477214-0
|n 23
|p 4123 - 4134
|t Biophysical journal
|v 123
|y 2024
|x 0006-3495
856 4 _ |u https://pub.dzne.de/record/273920/files/DZNE-2024-01394%20SUP.zip
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/273920/files/DZNE-2024-01394.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/273920/files/DZNE-2024-01394.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:273920
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9000582
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)9000670
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOPHYS J : 2022
|d 2023-08-23
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
920 1 _ |0 I:(DE-2719)1813002
|k AG Milovanovic (Berlin)
|l Molecular Neuroscience
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1813002
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21