001     273976
005     20250120103259.0
024 7 _ |a 10.1016/j.ejrad.2024.111825
|2 doi
024 7 _ |a pmid:39657546
|2 pmid
024 7 _ |a 0720-048X
|2 ISSN
024 7 _ |a 1872-7727
|2 ISSN
024 7 _ |a altmetric:170943835
|2 altmetric
037 _ _ |a DZNE-2024-01425
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Stüber, Anna Theresa
|b 0
245 _ _ |a Replication study of PD-L1 status prediction in NSCLC using PET/CT radiomics.
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737365530_4997
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This study investigates the predictive capability of radiomics in determining programmed cell death ligand 1 (PD-L1) expression (>=1%) status in non-small cell lung cancer (NSCLC) patients using a newly collected [18F]FDG PET/CT dataset. We aimed to replicate and validate the radiomics-based machine learning (ML) model proposed by Zhao et al. [1] predicting PD-L1 status from PET/CT-imaging. An independent cohort of 254 NSCLC patients underwent [18F]FDG PET/CT imaging, with primary tumor segmentation conducted using lung tissue window (LTW) and more conservative soft tissue window (STW) methods. Radiomics models ('Rad-score' and 'complex model') and a clinical-stage model from Zhao et al. were evaluated via 10-fold cross-validation and AUC analysis, alongside a benchmark-study comparing different ML-model pipelines. Clinicopathological data were collected from medical records. On our data, the Rad-score model yielded mean AUCs of 0.593 (STW) and 0.573 (LTW), below Zhao et al.'s 0.761. The complex model achieved mean AUCs of 0.505 (STW) and 0.519 (LTW), lower than Zhao et al.'s 0.769. The clinical model showed a mean AUC of 0.555, below Zhao et al.'s 0.64. All models performed significantly lower than Zhao et al.'s findings. Our benchmark study on four ML pipelines revealed consistently low performance across all configurations. Our study failed to replicate original findings, suggesting poor model performance and questioning predictive value of radiomics features in classifying PD-L1 expression from PET/CT imaging. These results highlight challenges in replicating radiomics-based ML models and stress the need for rigorous validation.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Machine learning benchmark
|2 Other
650 _ 7 |a NSCLC
|2 Other
650 _ 7 |a PD-L1
|2 Other
650 _ 7 |a PET/CT imaging data
|2 Other
650 _ 7 |a Radiomics
|2 Other
650 _ 7 |a Replication study
|2 Other
700 1 _ |a Heimer, Maurice M
|b 1
700 1 _ |a Ta, Johanna
|b 2
700 1 _ |a Fabritius, Matthias P
|b 3
700 1 _ |a Hoppe, Boj F
|b 4
700 1 _ |a Sheikh, Gabriel
|b 5
700 1 _ |a Brendel, Matthias
|0 P:(DE-2719)9001539
|b 6
|u dzne
700 1 _ |a Unterrainer, Lena
|b 7
700 1 _ |a Jurmeister, Philip
|b 8
700 1 _ |a Tufman, Amanda
|b 9
700 1 _ |a Ricke, Jens
|b 10
700 1 _ |a Cyran, Clemens C
|b 11
700 1 _ |a Ingrisch, Michael
|b 12
773 _ _ |a 10.1016/j.ejrad.2024.111825
|g Vol. 183, p. 111825 -
|0 PERI:(DE-600)2005350-2
|p 111825
|t European journal of radiology
|v 183
|y 2025
|x 0720-048X
856 4 _ |u https://pub.dzne.de/record/273976/files/DZNE-2024-01425%20SUP.pdf
856 4 _ |u https://pub.dzne.de/record/273976/files/DZNE-2024-01425_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/273976/files/DZNE-2024-01425%20SUP.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://pub.dzne.de/record/273976/files/DZNE-2024-01425_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:273976
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)9001539
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-26
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J RADIOL : 2022
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-26
920 1 _ |0 I:(DE-2719)1110007
|k AG Haass
|l Molecular Neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1110007
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21