001     274025
005     20250119000229.0
024 7 _ |a 10.1186/s13024-024-00786-w
|2 doi
024 7 _ |a pmid:39736627
|2 pmid
024 7 _ |a pmc:PMC11686972
|2 pmc
024 7 _ |a altmetric:172676831
|2 altmetric
037 _ _ |a DZNE-2025-00006
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Tayaranian Marvian, Amir
|0 P:(DE-2719)9000203
|b 0
|e First author
|u dzne
245 _ _ |a Distinct regulation of Tau Monomer and aggregate uptake and intracellular accumulation in human neurons.
260 _ _ |a London
|c 2024
|b Biomed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736336245_28059
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The prion-like spreading of Tau pathology is the leading cause of disease progression in various tauopathies. A critical step in propagating pathologic Tau in the brain is the transport from the extracellular environment and accumulation inside naïve neurons. Current research indicates that human neurons internalize both the physiological extracellular Tau (eTau) monomers and the pathological eTau aggregates. However, similarities or differences in neuronal transport mechanisms between Tau species remain elusive.Monomers, oligomers, and fibrils of recombinant 2N4R Tau were produced and characterized by biochemical and biophysical methods. A neuronal eTau uptake and accumulation assay was developed for human induced pluripotent stem cell-derived neurons (iPSCNs) and Lund human mesencephalic cells (LUHMES)-derived neurons. Mechanisms of uptake and cellular accumulation of eTau species were studied by using small molecule inhibitors of endocytic mechanisms and siRNAs targeting Tau uptake mediators.Extracellular Tau aggregates accumulated more than monomers in human neurons, mainly due to the higher efficiency of small fibrillar and soluble oligomeric aggregates in intraneuronal accumulation. A competition assay revealed a distinction in the neuronal accumulation between physiological eTau Monomers and pathology-relevant aggregates, suggesting differential transport mechanisms. Blocking heparan sulfate proteoglycans (HSPGs) with heparin only inhibited the accumulation of eTau aggregates, whereas monomers' uptake remained unaltered. At the molecular level, the downregulation of genes involved in HSPG synthesis exclusively blocked neuronal accumulation of eTau aggregates but not monomers, suggesting its role in the transport of pathologic Tau. Moreover, the knockdown of LRP1, as a receptor of Tau, mainly reduced the accumulation of monomeric form, confirming its involvement in Tau's physiological transport.These data propose that despite the similarity in the cellular mechanism, the uptake and accumulation of eTau Monomers and aggregates in human neurons are regulated by different molecular mediators. Thus, they address the possibility of targeting the pathological spreading of Tau aggregates without disturbing the probable physiological or non-pathogenic transport of Tau Monomers.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 1
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 2
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Cell-to-cell spreading
|2 Other
650 _ 7 |a Extracellular Tau
|2 Other
650 _ 7 |a HSPGs
|2 Other
650 _ 7 |a LRP1
|2 Other
650 _ 7 |a Neurodegeneration
|2 Other
650 _ 7 |a Uptake
|2 Other
650 _ 7 |a VPS35
|2 Other
650 _ 7 |a tau Proteins
|2 NLM Chemicals
650 _ 7 |a Protein Aggregates
|2 NLM Chemicals
650 _ 7 |a MAPT protein, human
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a tau Proteins: metabolism
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Tauopathies: metabolism
|2 MeSH
650 _ 2 |a Tauopathies: pathology
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: metabolism
|2 MeSH
650 _ 2 |a Protein Aggregates: physiology
|2 MeSH
700 1 _ |a Strauß, Tabea
|0 P:(DE-2719)2811799
|b 1
700 1 _ |a Tang, Qilin
|0 P:(DE-2719)9001127
|b 2
|u dzne
700 1 _ |a Tuck, Benjamin J
|b 3
700 1 _ |a Keeling, Sophie
|b 4
700 1 _ |a Rüdiger, Daniel
|b 5
700 1 _ |a Mirzazadeh Dizaji, Negar
|b 6
700 1 _ |a Mohammad-Beigi, Hossein
|b 7
700 1 _ |a Nuscher, Brigitte
|b 8
700 1 _ |a Chakraborty, Pijush
|0 P:(DE-2719)2812532
|b 9
|u dzne
700 1 _ |a Sutherland, Duncan S
|b 10
700 1 _ |a McEwan, William A
|b 11
700 1 _ |a Köglsperger, Thomas
|0 P:(DE-2719)2810825
|b 12
|u dzne
700 1 _ |a Zahler, Stefan
|b 13
700 1 _ |a Zweckstetter, Markus
|0 P:(DE-2719)2810591
|b 14
|u dzne
700 1 _ |a Lichtenthaler, Stefan F
|0 P:(DE-2719)2181459
|b 15
|u dzne
700 1 _ |a Wurst, Wolfgang
|0 P:(DE-2719)2000028
|b 16
|u dzne
700 1 _ |a Schwarz, Sigrid
|0 P:(DE-2719)2812262
|b 17
|u dzne
700 1 _ |a Höglinger, Günter
|0 P:(DE-2719)2811373
|b 18
|e Last author
|u dzne
773 _ _ |a 10.1186/s13024-024-00786-w
|g Vol. 19, no. 1, p. 100
|0 PERI:(DE-600)2244557-2
|n 1
|p 100
|t Molecular neurodegeneration
|v 19
|y 2024
|x 1750-1326
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/274025/files/DZNE-2025-00006.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/274025/files/DZNE-2025-00006.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:274025
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9000203
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2811799
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9001127
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-2719)2812532
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 12
|6 P:(DE-2719)2810825
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 14
|6 P:(DE-2719)2810591
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 15
|6 P:(DE-2719)2181459
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 16
|6 P:(DE-2719)2000028
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 17
|6 P:(DE-2719)2812262
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 18
|6 P:(DE-2719)2811373
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 1
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 2
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:09:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:09:14Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-25
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
920 1 _ |0 I:(DE-2719)1111015
|k Clinical Research (Munich)
|l Clinical Research (Munich)
|x 0
920 1 _ |0 I:(DE-2719)1110008
|k AG Simons
|l Molecular Neurobiology
|x 1
920 1 _ |0 I:(DE-2719)1110002
|k AG Höglinger
|l Translational Neurodegeneration
|x 2
920 1 _ |0 I:(DE-2719)1410001
|k AG Zweckstetter
|l Translational Structural Biology
|x 3
920 1 _ |0 I:(DE-2719)1110006
|k AG Lichtenthaler
|l Neuroproteomics
|x 4
920 1 _ |0 I:(DE-2719)1140001
|k AG Wurst
|l Genome Engineering
|x 5
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1111015
980 _ _ |a I:(DE-2719)1110008
980 _ _ |a I:(DE-2719)1110002
980 _ _ |a I:(DE-2719)1410001
980 _ _ |a I:(DE-2719)1110006
980 _ _ |a I:(DE-2719)1140001
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21