001     274029
005     20250115165651.0
024 7 _ |a 10.7150/ijbs.101087
|2 doi
024 7 _ |a pmid:39744433
|2 pmid
024 7 _ |a pmc:PMC11667826
|2 pmc
024 7 _ |a 1449-2288
|2 ISSN
037 _ _ |a DZNE-2025-00010
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Bernis, Maria E
|0 P:(DE-2719)2810557
|b 0
|e First author
|u dzne
245 _ _ |a The Neuroprotective Effects of Caffeine in a Neonatal Hypoxia-Ischemia Model are Regulated through the AMPK/mTOR Pathway.
260 _ _ |a Lake Haven, N.S.W. [u.a.]
|c 2025
|b Ivyspring International Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736939328_13620
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Neonatal hypoxic-ischemic encephalopathy (HIE) is the most common cause of death and long-term disabilities in term neonates. Caffeine exerts anti-inflammatory effects and has been used in neonatal intensive care units in recent decades. In our neonatal rat model of hypoxic-ischemic (HI) brain injury, we demonstrated that a single daily dose of caffeine (40 mg/kg) for 3 days post-HI reduced brain tissue loss and microgliosis compared to the vehicle group. The AMPK/mTOR pathway plays an important role in sensing the stress responses following brain injury. However, the role of mTOR in HI-associated brain damage remains unclear. A detailed analysis of the AMPK/mTOR pathway in our model revealed that this pathway plays a key role in hypoxia-regulated neuroprotection and can be significantly influenced by caffeine treatment. Targeting HI with caffeine might offer effective neuroprotection, reduce mortality, and improve functional outcomes in patients with HIE, especially in low- and middle-income countries, where neuroprotective treatment is urgently needed.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a AMPK
|2 Other
650 _ 7 |a Caffeine
|2 Other
650 _ 7 |a Hypoxia-Ischemia
|2 Other
650 _ 7 |a Neonatal
|2 Other
650 _ 7 |a Neuroprotection
|2 Other
650 _ 7 |a mTOR
|2 Other
650 _ 7 |a Caffeine
|0 3G6A5W338E
|2 NLM Chemicals
650 _ 7 |a Neuroprotective Agents
|2 NLM Chemicals
650 _ 7 |a TOR Serine-Threonine Kinases
|0 EC 2.7.11.1
|2 NLM Chemicals
650 _ 7 |a AMP-Activated Protein Kinases
|0 EC 2.7.11.31
|2 NLM Chemicals
650 _ 2 |a Caffeine: pharmacology
|2 MeSH
650 _ 2 |a Caffeine: therapeutic use
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Neuroprotective Agents: therapeutic use
|2 MeSH
650 _ 2 |a Neuroprotective Agents: pharmacology
|2 MeSH
650 _ 2 |a TOR Serine-Threonine Kinases: metabolism
|2 MeSH
650 _ 2 |a Hypoxia-Ischemia, Brain: metabolism
|2 MeSH
650 _ 2 |a Hypoxia-Ischemia, Brain: drug therapy
|2 MeSH
650 _ 2 |a Rats
|2 MeSH
650 _ 2 |a Animals, Newborn
|2 MeSH
650 _ 2 |a Rats, Sprague-Dawley
|2 MeSH
650 _ 2 |a AMP-Activated Protein Kinases: metabolism
|2 MeSH
650 _ 2 |a Signal Transduction: drug effects
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
700 1 _ |a Burkard, Hannah
|0 P:(DE-2719)9002524
|b 1
|u dzne
700 1 _ |a Bremer, Anna-Sophie
|0 P:(DE-2719)9001591
|b 2
|u dzne
700 1 _ |a Grzelak, Kora
|0 P:(DE-2719)9003296
|b 3
|u dzne
700 1 _ |a Zweyer, Margit
|0 P:(DE-2719)9000835
|b 4
|u dzne
700 1 _ |a Maes, Elke
|0 P:(DE-2719)9001055
|b 5
|u dzne
700 1 _ |a Nacarkucuk, Efe
|0 P:(DE-2719)9002544
|b 6
|u dzne
700 1 _ |a Kaibel, Hanna
|0 P:(DE-2719)9001619
|b 7
|u dzne
700 1 _ |a Hakvoort, Charlotte
|0 P:(DE-2719)9002687
|b 8
|u dzne
700 1 _ |a Müller, Andreas
|b 9
700 1 _ |a Sabir, Hemmen
|0 P:(DE-2719)9000732
|b 10
|e Last author
|u dzne
773 _ _ |a 10.7150/ijbs.101087
|g Vol. 21, no. 1, p. 251 - 270
|0 PERI:(DE-600)2179208-2
|n 1
|p 251 - 270
|t International journal of biological sciences
|v 21
|y 2025
|x 1449-2288
856 4 _ |u https://pub.dzne.de/record/274029/files/DZNE-2025-00010%20SUP.pdf
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/274029/files/DZNE-2025-00010.pdf
856 4 _ |x pdfa
|u https://pub.dzne.de/record/274029/files/DZNE-2025-00010%20SUP.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/274029/files/DZNE-2025-00010.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:274029
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2810557
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9002524
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9001591
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9003296
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9000835
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)9001055
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-2719)9002544
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-2719)9001619
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-2719)9002687
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)9000732
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J BIOL SCI : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-29T18:48:03Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-29T18:48:03Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2023-05-29T18:48:03Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J BIOL SCI : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
920 1 _ |0 I:(DE-2719)5000032
|k AG Sabir
|l Neonatal Neuroscience
|x 0
920 1 _ |0 I:(DE-2719)1013032
|k AG Salomoni
|l Nuclear Function in CNS Pathophysiology
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)5000032
980 _ _ |a I:(DE-2719)1013032
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21