001     274031
005     20250411100000.0
024 7 _ |a 10.1097/RLI.0000000000001107
|2 doi
024 7 _ |a pmid:39074258
|2 pmid
024 7 _ |a 0020-9996
|2 ISSN
024 7 _ |a 1536-0210
|2 ISSN
037 _ _ |a DZNE-2025-00012
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Haase, Robert
|0 P:(DE-2719)9001860
|b 0
245 _ _ |a Artificial T1-Weighted Postcontrast Brain MRI: A Deep Learning Method for Contrast Signal Extraction.
260 _ _ |a [Erscheinungsort nicht ermittelbar]
|c 2025
|b Ovid
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1744358340_16420
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Reducing gadolinium-based contrast agents to lower costs, the environmental impact of gadolinium-containing wastewater, and patient exposure is still an unresolved issue. Published methods have never been compared. The purpose of this study was to compare the performance of 2 reimplemented state-of-the-art deep learning methods (settings A and B) and a proposed method for contrast signal extraction (setting C) to synthesize artificial T1-weighted full-dose images from corresponding noncontrast and low-dose images.In this prospective study, 213 participants received magnetic resonance imaging of the brain between August and October 2021 including low-dose (0.02 mmol/kg) and full-dose images (0.1 mmol/kg). Fifty participants were randomly set aside as test set before training (mean age ± SD, 52.6 ± 15.3 years; 30 men). Artificial and true full-dose images were compared using a reader-based study. Two readers noted all false-positive lesions and scored the overall interchangeability in regard to the clinical conclusion. Using a 5-point Likert scale (0 being the worst), they scored the contrast enhancement of each lesion and its conformity to the respective reference in the true image.The average counts of false-positives per participant were 0.33 ± 0.93, 0.07 ± 0.33, and 0.05 ± 0.22 for settings A-C, respectively. Setting C showed a significantly higher proportion of scans scored as fully or mostly interchangeable (70/100) than settings A (40/100, P < 0.001) and B (57/100, P < 0.001), and generated the smallest mean enhancement reduction of scored lesions (-0.50 ± 0.55) compared with the true images (setting A: -1.10 ± 0.98; setting B: -0.91 ± 0.67, both P < 0.001). The average scores of conformity of the lesion were 1.75 ± 1.07, 2.19 ± 1.04, and 2.48 ± 0.91 for settings A-C, respectively, with significant differences among all settings (all P < 0.001).The proposed method for contrast signal extraction showed significant improvements in synthesizing postcontrast images. A relevant proportion of images showing inadequate interchangeability with the reference remains at this dosage.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Contrast Media
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Deep Learning
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Contrast Media
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Prospective Studies
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Brain: diagnostic imaging
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
700 1 _ |a Pinetz, Thomas
|b 1
700 1 _ |a Kobler, Erich
|b 2
700 1 _ |a Bendella, Zeynep
|0 P:(DE-2719)9003165
|b 3
|u dzne
700 1 _ |a Gronemann, Christian
|b 4
700 1 _ |a Paech, Daniel
|0 P:(DE-2719)9001705
|b 5
|u dzne
700 1 _ |a Radbruch, Alexander
|0 P:(DE-2719)9001861
|b 6
|u dzne
700 1 _ |a Effland, Alexander
|0 P:(DE-2719)9002732
|b 7
|u dzne
700 1 _ |a Deike-Hofmann, Katerina
|0 P:(DE-2719)9001745
|b 8
|e Last author
773 _ _ |a 10.1097/RLI.0000000000001107
|g Vol. 60, no. 2
|0 PERI:(DE-600)2041543-6
|n 2
|p 105 - 113
|t Investigative radiology
|v 60
|y 2025
|x 0020-9996
856 4 _ |u https://pub.dzne.de/record/274031/files/DZNE-2025-00012%20SUP.doc
856 4 _ |u https://pub.dzne.de/record/274031/files/DZNE-2025-00012%20SUP.docx
856 4 _ |u https://pub.dzne.de/record/274031/files/DZNE-2025-00012%20SUP.odt
856 4 _ |u https://pub.dzne.de/record/274031/files/DZNE-2025-00012%20SUP.pdf
856 4 _ |u https://pub.dzne.de/record/274031/files/DZNE-2025-00012_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/274031/files/DZNE-2025-00012_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:274031
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-2719)9003165
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-2719)9001705
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)9001861
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-2719)9002732
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)9001745
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2025
915 _ _ |a Allianz-Lizenz
|0 StatID:(DE-HGF)0410
|2 StatID
|d 2023-10-24
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INVEST RADIOL : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INVEST RADIOL : 2022
|d 2023-10-24
920 1 _ |0 I:(DE-2719)5000075
|k AG Radbruch
|l Clinical Neuroimaging
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)5000075
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21