001     274042
005     20250119000254.0
024 7 _ |a 10.1162/netn_a_00395
|2 doi
024 7 _ |a pmid:39735502
|2 pmid
024 7 _ |a pmc:PMC11674321
|2 pmc
024 7 _ |a altmetric:172282162
|2 altmetric
037 _ _ |a DZNE-2025-00023
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Tu, Jiaxin Cindy
|0 0000-0003-1982-9890
|b 0
245 _ _ |a Increasing hub disruption parallels dementia severity in autosomal dominant Alzheimer's disease.
260 _ _ |a Cambridge, MA
|c 2024
|b The MIT Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736339625_683
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Hub regions in the brain, recognized for their roles in ensuring efficient information transfer, are vulnerable to pathological alterations in neurodegenerative conditions, including Alzheimer's disease (AD). Computational simulations and animal experiments have hinted at the theory of activity-dependent degeneration as the cause of this hub vulnerability. However, two critical issues remain unresolved. First, past research has not clearly distinguished between two scenarios: hub regions facing a higher risk of connectivity disruption (targeted attack) and all regions having an equal risk (random attack). Second, human studies offering support for activity-dependent explanations remain scarce. We refined the hub disruption index to demonstrate a hub disruption pattern in functional connectivity in autosomal dominant AD that aligned with targeted attacks. This hub disruption is detectable even in preclinical stages, 12 years before the expected symptom onset and is amplified alongside symptomatic progression. Moreover, hub disruption was primarily tied to regional differences in global connectivity and sequentially followed changes observed in amyloid-beta positron emission tomography cortical markers, consistent with the activity-dependent degeneration explanation. Taken together, our findings deepen the understanding of brain network organization in neurodegenerative diseases and could be instrumental in refining diagnostic and targeted therapeutic strategies for AD in the future.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Alzheimer’s disease
|2 Other
650 _ 7 |a Biomarker
|2 Other
650 _ 7 |a Functional connectivity
|2 Other
650 _ 7 |a Hubs
|2 Other
650 _ 7 |a Neurodegeneration
|2 Other
700 1 _ |a Millar, Peter R
|b 1
700 1 _ |a Strain, Jeremy F
|b 2
700 1 _ |a Eck, Andrew
|b 3
700 1 _ |a Adeyemo, Babatunde
|b 4
700 1 _ |a Snyder, Abraham Z
|b 5
700 1 _ |a Daniels, Alisha
|b 6
700 1 _ |a Karch, Celeste
|b 7
700 1 _ |a Huey, Edward D
|b 8
700 1 _ |a McDade, Eric
|b 9
700 1 _ |a Day, Gregory S
|b 10
700 1 _ |a Yakushev, Igor
|b 11
700 1 _ |a Hassenstab, Jason
|b 12
700 1 _ |a Morris, John
|b 13
700 1 _ |a Llibre-Guerra, Jorge J
|b 14
700 1 _ |a Ibanez, Laura
|b 15
700 1 _ |a Jucker, Mathias
|0 P:(DE-2719)2000010
|b 16
|u dzne
700 1 _ |a Mendez, Patricio Chrem
|b 17
700 1 _ |a Perrin, Richard J
|b 18
700 1 _ |a Benzinger, Tammie L S
|b 19
700 1 _ |a Jack, Clifford R
|b 20
700 1 _ |a Betzel, Richard
|b 21
700 1 _ |a Ances, Beau M
|b 22
700 1 _ |a Eggebrecht, Adam T
|b 23
700 1 _ |a Gordon, Brian A
|b 24
700 1 _ |a Wheelock, Muriah D
|0 0000-0002-3409-8777
|b 25
700 1 _ |a Network, Dominantly Inherited Alzheimer
|b 26
|e Collaboration Author
773 _ _ |a 10.1162/netn_a_00395
|g Vol. 8, no. 4, p. 1265 - 1290
|0 PERI:(DE-600)2900481-0
|n 4
|p 1265 - 1290
|t Network neuroscience
|v 8
|y 2024
|x 2472-1751
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/274042/files/DZNE-2025-00023.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/274042/files/DZNE-2025-00023.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:274042
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 16
|6 P:(DE-2719)2000010
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NETW NEUROSCI : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-02-09T16:05:29Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-02-09T16:05:29Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-02-09T16:05:29Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
920 1 _ |0 I:(DE-2719)1210001
|k AG Jucker
|l Cell Biology of Neurological Diseases
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1210001
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21