001     274055
005     20250203165919.0
024 7 _ |a 10.1038/s41467-024-55179-w
|2 doi
024 7 _ |a pmid:39702306
|2 pmid
024 7 _ |a pmc:PMC11659560
|2 pmc
024 7 _ |a altmetric:172511737
|2 altmetric
037 _ _ |a DZNE-2025-00036
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Kröger, Charlotte
|0 P:(DE-2719)9000629
|b 0
|e First author
245 _ _ |a Unveiling the power of high-dimensional cytometry data with cyCONDOR.
260 _ _ |a [London]
|c 2024
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738571362_16407
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a High-dimensional cytometry (HDC) is a powerful technology for studying single-cell phenotypes in complex biological systems. Although technological developments and affordability have made HDC broadly available in recent years, technological advances were not coupled with an adequate development of analytical methods that can take full advantage of the complex data generated. While several analytical platforms and bioinformatics tools have become available for the analysis of HDC data, these are either web-hosted with limited scalability or designed for expert computational biologists, making their use unapproachable for wet lab scientists. Additionally, end-to-end HDC data analysis is further hampered due to missing unified analytical ecosystems, requiring researchers to navigate multiple platforms and software packages to complete the analysis. To bridge this data analysis gap in HDC we develop cyCONDOR, an easy-to-use computational framework covering not only all essential steps of cytometry data analysis but also including an array of downstream functions and tools to expand the biological interpretation of the data. The comprehensive suite of features of cyCONDOR, including guided pre-processing, clustering, dimensionality reduction, and machine learning algorithms, facilitates the seamless integration of cyCONDOR into clinically relevant settings, where scalability and disease classification are paramount for the widespread adoption of HDC in clinical practice. Additionally, the advanced analytical features of cyCONDOR, such as pseudotime analysis and batch integration, provide researchers with the tools to extract deeper insights from their data. We use cyCONDOR on a variety of data from different tissues and technologies demonstrating its versatility to assist the analysis of high-dimensional data from preprocessing to biological interpretation.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 2 |a Software
|2 MeSH
650 _ 2 |a Flow Cytometry: methods
|2 MeSH
650 _ 2 |a Computational Biology: methods
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Single-Cell Analysis: methods
|2 MeSH
650 _ 2 |a Algorithms
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Machine Learning
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Cluster Analysis
|2 MeSH
693 _ _ |0 EXP:(DE-2719)DELCODE-20140101
|5 EXP:(DE-2719)DELCODE-20140101
|e Longitudinal Cognitive Impairment and Dementia Study
|x 0
693 _ _ |0 EXP:(DE-2719)PRECISE-20190321
|5 EXP:(DE-2719)PRECISE-20190321
|e Platform for Single Cell Genomics and Epigenomics at DZNE University of Bonn
|x 1
700 1 _ |a Müller, Sophie
|0 P:(DE-2719)9001774
|b 1
|e First author
700 1 _ |a Leidner, Jacqueline
|0 P:(DE-2719)9002691
|b 2
|e First author
|u dzne
700 1 _ |a Kroeber, Theresa
|0 P:(DE-2719)9002692
|b 3
|u dzne
700 1 _ |a Warnat-Herresthal, Stefanie
|0 P:(DE-2719)9001511
|b 4
|u dzne
700 1 _ |a Spintge, Jannis Bastian
|0 P:(DE-2719)9001907
|b 5
|u dzne
700 1 _ |a Zajac, Timo
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Neubauer, Anna
|0 P:(DE-2719)9002624
|b 7
|u dzne
700 1 _ |a Frolov, Aleksej
|0 P:(DE-2719)9002087
|b 8
|u dzne
700 1 _ |a Carraro, Caterina
|0 P:(DE-2719)9001303
|b 9
|u dzne
700 1 _ |a Group, DELCODE Study
|b 10
|e Collaboration Author
700 1 _ |a Jessen, Frank
|0 P:(DE-2719)2000032
|b 11
|u dzne
700 1 _ |a Puccio, Simone
|0 0000-0003-4007-4365
|b 12
700 1 _ |a Aschenbrenner, Anna C
|0 P:(DE-2719)2812913
|b 13
700 1 _ |a Schultze, Joachim L
|0 P:(DE-2719)2811660
|b 14
700 1 _ |a Pecht, Tal
|0 P:(DE-2719)9002574
|b 15
700 1 _ |a Beyer, Marc D
|0 P:(DE-2719)2812219
|b 16
700 1 _ |a Bonaguro, Lorenzo
|0 P:(DE-2719)9001512
|b 17
|e Last author
700 1 _ |a Freiesleben, Silka Dawn
|0 P:(DE-2719)2812392
|b 18
|e Contributor
|u dzne
700 1 _ |a Altenstein, Slawek
|0 P:(DE-2719)2811720
|b 19
|e Contributor
|u dzne
700 1 _ |a Rauchmann, Boris Stephan
|0 P:(DE-2719)9001808
|b 20
|e Contributor
|u dzne
700 1 _ |a Kilimann, Ingo
|0 P:(DE-2719)2810394
|b 21
|e Contributor
|u dzne
700 1 _ |a Coenjaerts, Marie
|b 22
|e Contributor
700 1 _ |a Spottke, Annika
|0 P:(DE-2719)2811324
|b 23
|e Contributor
|u dzne
700 1 _ |a Peters, Oliver
|0 P:(DE-2719)2811024
|b 24
|e Contributor
|u dzne
700 1 _ |a Priller, Josef
|0 P:(DE-2719)2811122
|b 25
|e Contributor
|u dzne
700 1 _ |a Perneczky, Robert
|0 P:(DE-2719)2812234
|b 26
|e Contributor
|u dzne
700 1 _ |a Teipel, Stefan
|0 P:(DE-2719)2000026
|b 27
|e Contributor
|u dzne
700 1 _ |a Düzel, Emrah
|0 P:(DE-2719)2000005
|b 28
|e Contributor
|u dzne
773 _ _ |a 10.1038/s41467-024-55179-w
|g Vol. 15, no. 1, p. 10702
|0 PERI:(DE-600)2553671-0
|n 1
|p 10702
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
856 4 _ |u https://pub.dzne.de/record/274055/files/DZNE-2025-00036.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/274055/files/DZNE-2025-00036.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:274055
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9000629
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9001774
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9002691
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9002692
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9001511
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)9001907
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)9002624
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)9002087
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)9001303
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)2000032
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 13
|6 P:(DE-2719)2812913
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 14
|6 P:(DE-2719)2811660
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 15
|6 P:(DE-2719)9002574
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 16
|6 P:(DE-2719)2812219
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 17
|6 P:(DE-2719)9001512
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 18
|6 P:(DE-2719)2812392
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 19
|6 P:(DE-2719)2811720
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 20
|6 P:(DE-2719)9001808
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 21
|6 P:(DE-2719)2810394
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 23
|6 P:(DE-2719)2811324
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 24
|6 P:(DE-2719)2811024
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 25
|6 P:(DE-2719)2811122
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 26
|6 P:(DE-2719)2812234
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 27
|6 P:(DE-2719)2000026
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 28
|6 P:(DE-2719)2000005
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:09:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:09:09Z
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2023-05-02T09:09:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-29
920 1 _ |0 I:(DE-2719)1013038
|k AG Schultze
|l Clinical Single Cell Omics (CSCO) / Systems Medicine
|x 0
920 1 _ |0 I:(DE-2719)5000082
|k AG Aschenbrenner
|l Aging and Immunity
|x 1
920 1 _ |0 I:(DE-2719)1013035
|k AG Beyer
|l Immunogenomics and Neurodegeneration
|x 2
920 1 _ |0 I:(DE-2719)1011102
|k AG Jessen
|l Clinical Alzheimer’s Disease Research
|x 3
920 1 _ |0 I:(DE-2719)1013031
|k PRECISE
|l Platform for Single Cell Genomics and Epigenomics
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1013038
980 _ _ |a I:(DE-2719)5000082
980 _ _ |a I:(DE-2719)1013035
980 _ _ |a I:(DE-2719)1011102
980 _ _ |a I:(DE-2719)1013031
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21