Home > Publications Database > Unveiling the power of high-dimensional cytometry data with cyCONDOR. > print |
001 | 274055 | ||
005 | 20250203165919.0 | ||
024 | 7 | _ | |a 10.1038/s41467-024-55179-w |2 doi |
024 | 7 | _ | |a pmid:39702306 |2 pmid |
024 | 7 | _ | |a pmc:PMC11659560 |2 pmc |
024 | 7 | _ | |a altmetric:172511737 |2 altmetric |
037 | _ | _ | |a DZNE-2025-00036 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Kröger, Charlotte |0 P:(DE-2719)9000629 |b 0 |e First author |
245 | _ | _ | |a Unveiling the power of high-dimensional cytometry data with cyCONDOR. |
260 | _ | _ | |a [London] |c 2024 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1738571362_16407 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a High-dimensional cytometry (HDC) is a powerful technology for studying single-cell phenotypes in complex biological systems. Although technological developments and affordability have made HDC broadly available in recent years, technological advances were not coupled with an adequate development of analytical methods that can take full advantage of the complex data generated. While several analytical platforms and bioinformatics tools have become available for the analysis of HDC data, these are either web-hosted with limited scalability or designed for expert computational biologists, making their use unapproachable for wet lab scientists. Additionally, end-to-end HDC data analysis is further hampered due to missing unified analytical ecosystems, requiring researchers to navigate multiple platforms and software packages to complete the analysis. To bridge this data analysis gap in HDC we develop cyCONDOR, an easy-to-use computational framework covering not only all essential steps of cytometry data analysis but also including an array of downstream functions and tools to expand the biological interpretation of the data. The comprehensive suite of features of cyCONDOR, including guided pre-processing, clustering, dimensionality reduction, and machine learning algorithms, facilitates the seamless integration of cyCONDOR into clinically relevant settings, where scalability and disease classification are paramount for the widespread adoption of HDC in clinical practice. Additionally, the advanced analytical features of cyCONDOR, such as pseudotime analysis and batch integration, provide researchers with the tools to extract deeper insights from their data. We use cyCONDOR on a variety of data from different tissues and technologies demonstrating its versatility to assist the analysis of high-dimensional data from preprocessing to biological interpretation. |
536 | _ | _ | |a 354 - Disease Prevention and Healthy Aging (POF4-354) |0 G:(DE-HGF)POF4-354 |c POF4-354 |f POF IV |x 0 |
536 | _ | _ | |a 353 - Clinical and Health Care Research (POF4-353) |0 G:(DE-HGF)POF4-353 |c POF4-353 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
650 | _ | 2 | |a Software |2 MeSH |
650 | _ | 2 | |a Flow Cytometry: methods |2 MeSH |
650 | _ | 2 | |a Computational Biology: methods |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Single-Cell Analysis: methods |2 MeSH |
650 | _ | 2 | |a Algorithms |2 MeSH |
650 | _ | 2 | |a Animals |2 MeSH |
650 | _ | 2 | |a Machine Learning |2 MeSH |
650 | _ | 2 | |a Mice |2 MeSH |
650 | _ | 2 | |a Cluster Analysis |2 MeSH |
693 | _ | _ | |0 EXP:(DE-2719)DELCODE-20140101 |5 EXP:(DE-2719)DELCODE-20140101 |e Longitudinal Cognitive Impairment and Dementia Study |x 0 |
693 | _ | _ | |0 EXP:(DE-2719)PRECISE-20190321 |5 EXP:(DE-2719)PRECISE-20190321 |e Platform for Single Cell Genomics and Epigenomics at DZNE University of Bonn |x 1 |
700 | 1 | _ | |a Müller, Sophie |0 P:(DE-2719)9001774 |b 1 |e First author |
700 | 1 | _ | |a Leidner, Jacqueline |0 P:(DE-2719)9002691 |b 2 |e First author |u dzne |
700 | 1 | _ | |a Kroeber, Theresa |0 P:(DE-2719)9002692 |b 3 |u dzne |
700 | 1 | _ | |a Warnat-Herresthal, Stefanie |0 P:(DE-2719)9001511 |b 4 |u dzne |
700 | 1 | _ | |a Spintge, Jannis Bastian |0 P:(DE-2719)9001907 |b 5 |u dzne |
700 | 1 | _ | |a Zajac, Timo |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Neubauer, Anna |0 P:(DE-2719)9002624 |b 7 |u dzne |
700 | 1 | _ | |a Frolov, Aleksej |0 P:(DE-2719)9002087 |b 8 |u dzne |
700 | 1 | _ | |a Carraro, Caterina |0 P:(DE-2719)9001303 |b 9 |u dzne |
700 | 1 | _ | |a Group, DELCODE Study |b 10 |e Collaboration Author |
700 | 1 | _ | |a Jessen, Frank |0 P:(DE-2719)2000032 |b 11 |u dzne |
700 | 1 | _ | |a Puccio, Simone |0 0000-0003-4007-4365 |b 12 |
700 | 1 | _ | |a Aschenbrenner, Anna C |0 P:(DE-2719)2812913 |b 13 |
700 | 1 | _ | |a Schultze, Joachim L |0 P:(DE-2719)2811660 |b 14 |
700 | 1 | _ | |a Pecht, Tal |0 P:(DE-2719)9002574 |b 15 |
700 | 1 | _ | |a Beyer, Marc D |0 P:(DE-2719)2812219 |b 16 |
700 | 1 | _ | |a Bonaguro, Lorenzo |0 P:(DE-2719)9001512 |b 17 |e Last author |
700 | 1 | _ | |a Freiesleben, Silka Dawn |0 P:(DE-2719)2812392 |b 18 |e Contributor |u dzne |
700 | 1 | _ | |a Altenstein, Slawek |0 P:(DE-2719)2811720 |b 19 |e Contributor |u dzne |
700 | 1 | _ | |a Rauchmann, Boris Stephan |0 P:(DE-2719)9001808 |b 20 |e Contributor |u dzne |
700 | 1 | _ | |a Kilimann, Ingo |0 P:(DE-2719)2810394 |b 21 |e Contributor |u dzne |
700 | 1 | _ | |a Coenjaerts, Marie |b 22 |e Contributor |
700 | 1 | _ | |a Spottke, Annika |0 P:(DE-2719)2811324 |b 23 |e Contributor |u dzne |
700 | 1 | _ | |a Peters, Oliver |0 P:(DE-2719)2811024 |b 24 |e Contributor |u dzne |
700 | 1 | _ | |a Priller, Josef |0 P:(DE-2719)2811122 |b 25 |e Contributor |u dzne |
700 | 1 | _ | |a Perneczky, Robert |0 P:(DE-2719)2812234 |b 26 |e Contributor |u dzne |
700 | 1 | _ | |a Teipel, Stefan |0 P:(DE-2719)2000026 |b 27 |e Contributor |u dzne |
700 | 1 | _ | |a Düzel, Emrah |0 P:(DE-2719)2000005 |b 28 |e Contributor |u dzne |
773 | _ | _ | |a 10.1038/s41467-024-55179-w |g Vol. 15, no. 1, p. 10702 |0 PERI:(DE-600)2553671-0 |n 1 |p 10702 |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
856 | 4 | _ | |u https://pub.dzne.de/record/274055/files/DZNE-2025-00036.pdf |y OpenAccess |
856 | 4 | _ | |u https://pub.dzne.de/record/274055/files/DZNE-2025-00036.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:pub.dzne.de:274055 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 0 |6 P:(DE-2719)9000629 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 1 |6 P:(DE-2719)9001774 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 2 |6 P:(DE-2719)9002691 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 3 |6 P:(DE-2719)9002692 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 4 |6 P:(DE-2719)9001511 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 5 |6 P:(DE-2719)9001907 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 7 |6 P:(DE-2719)9002624 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 8 |6 P:(DE-2719)9002087 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 9 |6 P:(DE-2719)9001303 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 11 |6 P:(DE-2719)2000032 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 13 |6 P:(DE-2719)2812913 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 14 |6 P:(DE-2719)2811660 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 15 |6 P:(DE-2719)9002574 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 16 |6 P:(DE-2719)2812219 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 17 |6 P:(DE-2719)9001512 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 18 |6 P:(DE-2719)2812392 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 19 |6 P:(DE-2719)2811720 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 20 |6 P:(DE-2719)9001808 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 21 |6 P:(DE-2719)2810394 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 23 |6 P:(DE-2719)2811324 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 24 |6 P:(DE-2719)2811024 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 25 |6 P:(DE-2719)2811122 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 26 |6 P:(DE-2719)2812234 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 27 |6 P:(DE-2719)2000026 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 28 |6 P:(DE-2719)2000005 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-354 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Prevention and Healthy Aging |x 0 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-353 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Clinical and Health Care Research |x 1 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-29 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-29 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-29 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-29 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-08-29 |
920 | 1 | _ | |0 I:(DE-2719)1013038 |k AG Schultze |l Clinical Single Cell Omics (CSCO) / Systems Medicine |x 0 |
920 | 1 | _ | |0 I:(DE-2719)5000082 |k AG Aschenbrenner |l Aging and Immunity |x 1 |
920 | 1 | _ | |0 I:(DE-2719)1013035 |k AG Beyer |l Immunogenomics and Neurodegeneration |x 2 |
920 | 1 | _ | |0 I:(DE-2719)1011102 |k AG Jessen |l Clinical Alzheimer’s Disease Research |x 3 |
920 | 1 | _ | |0 I:(DE-2719)1013031 |k PRECISE |l Platform for Single Cell Genomics and Epigenomics |x 4 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-2719)1013038 |
980 | _ | _ | |a I:(DE-2719)5000082 |
980 | _ | _ | |a I:(DE-2719)1013035 |
980 | _ | _ | |a I:(DE-2719)1011102 |
980 | _ | _ | |a I:(DE-2719)1013031 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|