001     274060
005     20250119000310.0
024 7 _ |a 10.7554/eLife.91083
|2 doi
024 7 _ |a pmid:39699947
|2 pmid
024 7 _ |a pmc:PMC11658767
|2 pmc
024 7 _ |a altmetric:172279548
|2 altmetric
037 _ _ |a DZNE-2025-00041
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Gilsbach, Bernd K
|0 P:(DE-2719)2811745
|b 0
|e First author
|u dzne
245 _ _ |a Intramolecular feedback regulation of the LRRK2 Roc G domain by a LRRK2 kinase-dependent mechanism.
260 _ _ |a Cambridge
|c 2024
|b eLife Sciences Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736342979_4938
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Parkinson's disease (PD)-linked protein Leucine-Rich Repeat Kinase 2 (LRRK2) consists of seven domains, including a kinase and a Roc G domain. Despite the availability of several high-resolution structures, the dynamic regulation of its unique intramolecular domain stack is nevertheless still not well understood. By in-depth biochemical analysis, assessing the Michaelis-Menten kinetics of the Roc G domain, we have confirmed that LRRK2 has, similar to other Roco protein family members, a KM value of LRRK2 that lies within the range of the physiological GTP concentrations within the cell. Furthermore, the R1441G PD variant located within a mutational hotspot in the Roc domain showed an increased catalytic efficiency. In contrast, the most common PD variant G2019S, located in the kinase domain, showed an increased KM and reduced catalytic efficiency, suggesting a negative feedback mechanism from the kinase domain to the G domain. Autophosphorylation of the G1+2 residue (T1343) in the Roc P-loop motif is critical for this phosphoregulation of both the KM and the kcat values of the Roc-catalyzed GTP hydrolysis, most likely by changing the monomer-dimer equilibrium. The LRRK2 T1343A variant has a similar increased kinase activity in cells compared to G2019S and the double mutant T1343A/G2019S has no further increased activity, suggesting that T1343 is crucial for the negative feedback in the LRRK2 signaling cascade. Together, our data reveal a novel intramolecular feedback regulation of the LRRK2 Roc G domain by a LRRK2 kinase-dependent mechanism. Interestingly, PD mutants differently change the kinetics of the GTPase cycle, which might in part explain the difference in penetrance of these mutations in PD patients.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a GTPase
|2 Other
650 _ 7 |a LRRK2
|2 Other
650 _ 7 |a Michaelis–Menten kinetics
|2 Other
650 _ 7 |a PD
|2 Other
650 _ 7 |a biochemistry
|2 Other
650 _ 7 |a chemical biology
|2 Other
650 _ 7 |a negative feedback loop
|2 Other
650 _ 7 |a none
|2 Other
650 _ 7 |a parkinson's disease
|2 Other
650 _ 7 |a Leucine-Rich Repeat Serine-Threonine Protein Kinase-2
|0 EC 2.7.11.1
|2 NLM Chemicals
650 _ 7 |a LRRK2 protein, human
|0 EC 2.7.11.1
|2 NLM Chemicals
650 _ 7 |a Guanosine Triphosphate
|0 86-01-1
|2 NLM Chemicals
650 _ 2 |a Leucine-Rich Repeat Serine-Threonine Protein Kinase-2: metabolism
|2 MeSH
650 _ 2 |a Leucine-Rich Repeat Serine-Threonine Protein Kinase-2: genetics
|2 MeSH
650 _ 2 |a Leucine-Rich Repeat Serine-Threonine Protein Kinase-2: chemistry
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Phosphorylation
|2 MeSH
650 _ 2 |a Guanosine Triphosphate: metabolism
|2 MeSH
650 _ 2 |a Kinetics
|2 MeSH
650 _ 2 |a Protein Domains
|2 MeSH
650 _ 2 |a Parkinson Disease: genetics
|2 MeSH
650 _ 2 |a Parkinson Disease: metabolism
|2 MeSH
650 _ 2 |a Feedback, Physiological
|2 MeSH
700 1 _ |a Ho, Franz Y
|b 1
700 1 _ |a Riebenbauer, Benjamin
|0 P:(DE-2719)9000377
|b 2
|u dzne
700 1 _ |a Zhang, Xiaojuan
|b 3
700 1 _ |a Guaitoli, Giambattista
|0 P:(DE-2719)2811633
|b 4
|u dzne
700 1 _ |a Kortholt, Arjan
|0 0000-0001-8174-6397
|b 5
700 1 _ |a Gloeckner, Christian Johannes
|0 P:(DE-2719)2811291
|b 6
|e Last author
773 _ _ |a 10.7554/eLife.91083
|g Vol. 12, p. RP91083
|0 PERI:(DE-600)2687154-3
|p RP91083
|t eLife
|v 12
|y 2024
|x 2050-084X
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/274060/files/DZNE-2025-00041.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/274060/files/DZNE-2025-00041.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:274060
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2811745
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9000377
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2811633
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2811291
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELIFE : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-23T12:20:44Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-22
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELIFE : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
920 1 _ |0 I:(DE-2719)1210007
|k AG Gloeckner
|l Functional Neuroproteomics and Translational Biomarkers in Neurodegenerative Diseases
|x 0
920 1 _ |0 I:(DE-2719)1210000
|k AG Gasser
|l Parkinson Genetics
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1210007
980 _ _ |a I:(DE-2719)1210000
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21