001     275843
005     20250119000345.0
024 7 _ |a 10.1016/j.neuron.2024.10.006
|2 doi
024 7 _ |a pmid:39461332
|2 pmid
024 7 _ |a 0896-6273
|2 ISSN
024 7 _ |a 1097-4199
|2 ISSN
024 7 _ |a altmetric:169697056
|2 altmetric
037 _ _ |a DZNE-2025-00078
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Hille, Maike
|b 0
245 _ _ |a From animal models to human individuality: Integrative approaches to the study of brain plasticity.
260 _ _ |a [Cambridge, Mass.]
|c 2024
|b Cell Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736765797_13802
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Plasticity allows organisms to form lasting adaptive changes in neural structures in response to interactions with the environment. It serves both species-general functions and individualized skill acquisition. To better understand human plasticity, we need to strengthen the dialogue between human research and animal models. Therefore, we propose to (1) enhance the interpretability of macroscopic methods used in human research by complementing molecular and fine-structural measures used in animals with such macroscopic methods, preferably applied to the same animals, to create macroscopic metrics common to both examined species; (2) launch dedicated cross-species research programs, using either well-controlled experimental paradigms, such as motor skill acquisition, or more naturalistic environments, where individuals of either species are observed in their habitats; and (3) develop conceptual and computational models linking molecular and fine-structural events to phenomena accessible by macroscopic methods. In concert, these three component strategies can foster new insights into the nature of plastic change.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a animal models
|2 Other
650 _ 7 |a brain plasticity
|2 Other
650 _ 7 |a cross-level integration
|2 Other
650 _ 7 |a enrichment
|2 Other
650 _ 7 |a individuality
|2 Other
650 _ 7 |a skill acquisition
|2 Other
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Neuronal Plasticity: physiology
|2 MeSH
650 _ 2 |a Brain: physiology
|2 MeSH
650 _ 2 |a Models, Animal
|2 MeSH
650 _ 2 |a Individuality
|2 MeSH
700 1 _ |a Kühn, Simone
|b 1
700 1 _ |a Kempermann, Gerd
|0 P:(DE-2719)2000011
|b 2
|u dzne
700 1 _ |a Bonhoeffer, Tobias
|b 3
700 1 _ |a Lindenberger, Ulman
|b 4
773 _ _ |a 10.1016/j.neuron.2024.10.006
|g Vol. 112, no. 21, p. 3522 - 3541
|0 PERI:(DE-600)2001944-0
|n 21
|p 3522 - 3541
|t Neuron
|v 112
|y 2024
|x 0896-6273
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/275843/files/DZNE-2025-00078.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/275843/files/DZNE-2025-00078.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:275843
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2000011
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-27
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NEURON : 2022
|d 2024-12-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURON : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
920 1 _ |0 I:(DE-2719)1710001
|k AG Kempermann
|l Adult Neurogenesis
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1710001
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21