001     275851
005     20250113165814.0
024 7 _ |a 10.1515/hsz-2023-0205
|2 doi
024 7 _ |a pmid:39303162
|2 pmid
024 7 _ |a 0018-4888
|2 ISSN
024 7 _ |a 0177-3593
|2 ISSN
024 7 _ |a 0372-9672
|2 ISSN
024 7 _ |a 1431-6730
|2 ISSN
024 7 _ |a 1437-4315
|2 ISSN
037 _ _ |a DZNE-2025-00086
041 _ _ |a English
100 1 _ |a Vogt, Arend
|0 0000-0003-0925-0308
|b 0
245 _ _ |a Simultaneous spectral illumination of microplates for high-throughput optogenetics and photobiology.
260 _ _ |c 2024
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736767259_12317
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a ISSN: 1437-4315, Journal: Biological Chemistry
520 _ _ |a The biophysical characterization and engineering of optogenetic tools and photobiological systems has been hampered by the lack of efficient methods for spectral illumination of microplates for high-throughput analysis of action spectra. Current methods to determine action spectra only allow the sequential spectral illumination of individual wells. Here we present the open-source RainbowCap-system, which combines LEDs and optical filters in a standard 96-well microplate format for simultaneous and spectrally defined illumination. The RainbowCap provides equal photon flux for each wavelength, with the output of the LEDs narrowed by optical bandpass filters. We validated the RainbowCap for photoactivatable G protein-coupled receptors (opto-GPCRs) and enzymes for the control of intracellular downstream signaling. The simultaneous, spectrally defined illumination provides minimal interruption during time-series measurements, while resolving 10 nm differences in the action spectra of optogenetic proteins under identical experimental conditions. The RainbowCap is also suitable for studying the spectral dependence of light-regulated gene expression in bacteria, which requires illumination over several hours. In summary, the RainbowCap provides high-throughput spectral illumination of microplates, while its modular, customizable design allows easy adaptation to a wide range of optogenetic and photobiological applications.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a GPCR
|2 Other
650 _ 7 |a action spectra
|2 Other
650 _ 7 |a cyclic mononucleotides
|2 Other
650 _ 7 |a photoactivated nucleotidyl cyclases
|2 Other
650 _ 7 |a rhodopsin
|2 Other
650 _ 7 |a signal transduction
|2 Other
650 _ 7 |a Receptors, G-Protein-Coupled
|2 NLM Chemicals
650 _ 2 |a Optogenetics: methods
|2 MeSH
650 _ 2 |a Optogenetics: instrumentation
|2 MeSH
650 _ 2 |a Photobiology
|2 MeSH
650 _ 2 |a Receptors, G-Protein-Coupled: metabolism
|2 MeSH
650 _ 2 |a Receptors, G-Protein-Coupled: genetics
|2 MeSH
650 _ 2 |a High-Throughput Screening Assays
|2 MeSH
650 _ 2 |a Light
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
700 1 _ |a Paulat, Raik
|0 0000-0002-1810-6036
|b 1
700 1 _ |a Parthier, Daniel
|0 0000-0001-8775-024X
|b 2
700 1 _ |a Just, Verena
|b 3
700 1 _ |a Szczepek, Michal
|0 0000-0001-5079-6893
|b 4
700 1 _ |a Scheerer, Patrick
|0 0000-0001-5028-2075
|b 5
700 1 _ |a Xu, Qianzhao
|b 6
700 1 _ |a Möglich, Andreas
|0 0000-0002-7382-2772
|b 7
700 1 _ |a Schmitz, Dietmar
|0 P:(DE-2719)2810725
|b 8
700 1 _ |a Rost, Benjamin R
|0 P:(DE-2719)2810914
|b 9
700 1 _ |a Wenger, Nikolaus
|0 0000-0002-0965-7530
|b 10
773 _ _ |a 10.1515/hsz-2023-0205
|g Vol. 405, no. 11-12, p. 751 - 763
|0 PERI:(DE-600)1466062-3
|n 11-12
|p 751 - 763
|t (0018-4888)
|v 405
|y 2024
|x 0018-4888
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/275851/files/DZNE-2025-00086.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/275851/files/DZNE-2025-00086.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:275851
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2810725
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2810914
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOL CHEM : 2022
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
920 1 _ |0 I:(DE-2719)1810004
|k AG Schmitz
|l Network Dysfunction
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1810004
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21